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DEFINITION

The is the set of all possible outcomes of an experiment.

EXAMPLE : When we flip a coin then sample space is
S={H,T},

Where, H denotes that the coin lands ”Heads up”

and T denotes that the coin lands “Tails up”.

For a “ ” we expect H and T to have the same “ ” of

occurring, i.e., if we flip the coin many times then about 50 % of the outcomes

will be H.
We say that the of H to occur 1s 0.5 (or 50 %) .

The probability of T to occur is then also 0.5.
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concee  EXAMPLE

45

PR When we then the sample space is

THE ALGEBRA OF EVENTS

S=1{1,2,3,4,5,6).

AXIOMS OF PROBABILITY

ruererorerties — The probability the die lands with k up is % ,(k=1,2,.,6).

COUNTING OUTCOMES

When we roll it 1200 times we expect a 5 up about 200

PERMUTATIONS

times.

The probability the die lands with an up 1s
1 N 1 N 1 1
6 6 6 2
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SAMPLE  EXAMPLE

SPACES
When we toss a coin 3 times and record the results in the
DEFINITION
that they occur, then the sample space 1s
THE ALGEBRA OF EVENTS
S ={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT }.
AXIOMS OF PROBABILITY
Elements of S are “ 7 ”ooor
FURTHER PROPERTIES
COUNTING OUTCOMES
e We may expect each of the 8 outcomes to be equally likely.
COMBINATIONS Thus the probability of the sequence HTT is % :
The probability of a sequence to contain precisely two Heads are
45
1 N 1 N 1 3
8 8 8 8 ‘@\’WEW@

SUBRATA SAHA ooooooooo jon, Good Jobs



SAMPLE
SPACES

45

DEFINITION
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FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

EXAMPLE

When we toss a coin 3 times and record the results without paying
attention to the order in which they occur, e.g., if we only record the
number of Heads, then the sample space 1s

S={HHH, {(HH T} {(HTT} {TTT}.
The outcomes 1n .S are now ; 1.e., order 1s not important.

Recall that the ordered outcomes are

{ HHH , HHT , HTH , HTT, THH, THT, TTH, TTT }.

Note that
{H H,H} corresponds to one of the ordered outcomes,
{H.HT} ., three .,
{HTT} ., three .,
{TTT} ’ one "
Thus {H,H,H} and {T,7, T} each occur with probability % ,
: : ... 3
while {H,H, T} and {H,T,T} each occur with probability 3 QEWEWMB
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AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

EVENTS

In Probability Theory subsets of the sample space are called

EXAMPLE: The set of basic outcomes of rolling a die once is
S=1{1,2,3,4,5,6},
so the subset E={2,4,6 } is an example of an event.

If a die 1s rolled once and it lands with a 2 or a 4 or a 6 up then

we say that the event E has

We have already seen that the probability that E occurs 1s

1 1 1
P(E)Zg+g+g=

N |-
N\
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AXIOMS OF PROBABILITY
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45

THE ALGEBRA OF EVENTS

Since events are sets, namely, subsets of the sample space S, we can do
the usual set operations :

If E and F are events then we can form

E€ the complement of E

EUF the union of £ and F
EF the intersection of £ and F
We write E cFifEis a of F.
REMARK: In Probability Theory, we use
E€ instead of E,
EF insteadof ENF,

E CcF instead of E CF.
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DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

If the sample space S is then we typically allow any subset of S to be an event.
: If we randomly draw from a box containing the

characters a, b, and c, then the sample space is
S={a b, c},
and there are 8 possible events, namely, those in the set of events

E =1} {a},{b}, {c}, {ab}, {ac}, {bc}, {abc/

If the outcomes a, b, and ¢, are equally likely to occur, then

Py =

1

P{}) =0, Pa)=; PbY)

Wk

b

P(fab}) =% P(fac}) ==, P({be}) =%, P({abcl) =1.

For example, P({a,b}) is the probability the character is ana or a b

o
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SAMPLE
orcee  AXIOMS OF PROBABILITY

DEFINITION A P assigns a real number (the of E) to every
event £ in a sample space S.

THE ALGEBRA OF EVENTS

P(.) must satisfy the following basic properties :
* 0<PE)<]
- P(S) =1,

@ AXIOMS OF PROBABILITY
FURTHER PROPERTIES
COUNTING OUTCOMES

* For any E;,i=1,2,...,n, we have

PERMUTATIONS

womos | P(EI1 UE2 U..UEn) = P(E1)+P(E2)+ .... +P(En)

45
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SAMPLE
espaces FURTHER PROPERTIES

DEFINITION
THE ALGEBRA OF EVENTS P(E UEC) — P(E) + P(EC) — 1 . (Why ?)
AXIOMS OF PROBABILITY ThuS
FURTHER PROPERTIES P(EC) = 1 o P(E) ¢
EXAMPLE:
COUNTING OUTCOMES
What is the probability of at least one ”H” in of a coin?

PERMUTATIONS

COMBINATIONS

The sample space S will havel6 outcomes. (Which?)

43 1 15
P(atleastoneH) = 1 — P(noH) = 1 — — = =

SUBRATA SAHA 7 ccostmon Goslas



SAMPLE PROPERTY 2 :
SPACES
P(E UF) = P(E) + P(F) — P(EF) .

PEFINITION (using the third axiom) :
THE ALGEBRA OF EVENTS P(E UF) = P(EF) + P(EFc) + P(ECF)
= [P(EF) + P(EFc)] + [P(EF) + P(EcF)] — P(EF)

— P(E) + P(F)- P(EF) . (Why ?)

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES
NOTE:

PERMUTATIONS * Draw a Venn diagram with E and F to see this !

* The formula i1s similar to the one for the number of elements :

n(E UF) = n(E) + n(F) — n(EF) .

COMBINATIONS

45
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SPACES

DEFINITION

THE ALGEBRA OF EVENTS
AXIOMS OF PROBABILITY
FURTHER PROPERTIES
COUNTING OUTCOMES
PERMUTATIONS

COMBINATIONS

45

So far our sample spaces S have been
S can also be , €.g., the set Z of all integers.

S can also be , €.2., the set R of all real numbers.

EXAMPLE: Record the low temperature in Montreal on January 8 in each
of a large number of years.

We can take S to be the set of ,1.e., S=R.

(Are there are other choices of S ?)

What probability would you expect for the following to have?

(a) P(im}) (b) P(ix:—-m<x<mj)

(How does this differ from finite sample spaces?)

We will encounter such infinite sample spaces many times...
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SAMPLE
spacecs COUNTING OUTCOMES

PEFINITION We have seen examples where the outcomes in a sample space
THE ALGEBRA OF EVENTS are , 1.€., they have the same probability .
aomsorpromasry SUCh sample spaces occur quite often.

Computing probabilities then requires counting all outcomes and

FURTHER PROPERTIES

counting of outcomes .
@ COUNTING OUTCOMES

The counting has to be done carefully!

PERMUTATIONS
We will discuss a number of representative examples in detail.

COMBINATIONS

Concepts that arise include and

45
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DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

PERMUTATIONS

* Here we count of the number of * ” that can be formed from a
collection of items (e.g., letters).

* (Also called ).

* The of the items in the word is important; e.g., the word acb is

different from the word

* The is the number of characters in the word.

NOTE:

For the order is not important. For example, the set is the same as
the set
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DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

EXAMPLE

Suppose that four-letter words of alphabetic characters are
generated randomly with equally likely outcomes. (Assume that
)

(a) How many four-letter words are there in the sample space S ?

26% =456,976 .
(b) How many four-letter words are there are there in S that start with the
letter s ?

263
(c) What is the probability of generating a four-letter word that starts with

an ’,S 29 ()

Could this have been computed more easily?
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DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

EXAMPLE

How many re-orderings ( ) are there of the string ?(

SOLUTION : Six, namely,
If these permutations are generated randomly with equal probability then

what is the probability the word starts with the letter ”a ” ?

2 1
SOLUTION : - ==
6 3

EXAMPLE: In general, if the word length is n and all characters are distinct
then there are n! permutations of the word. ( Why 7))
If these permutations are generated randomly with equal probability then

what is the probability the word starts with a particular letter ?

N |
SOLUTION : u _ 1y
1. T
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SAMPLE
SPACES

DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES
@ PERMUTATIONS

COMBINATIONS

45

EXAMPLE : How many
words of length k£
can be formed from

a set of n (distinct) characters ,
(where kK <n ),

when letters can be used at most once ?

SOLUTION :
nn—-1)m-2) - (n—(k-1))
= nn—-1)mn—-2)--- (n—k+1)

n! I
- s (W)
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45

EXAMPLE : Three-letter words are generated randomly from the
five characters a ., b, ¢ . d, e, where letters can be used at most

once.

(a) How many three-letter words are there in the sample space S 7

(b)

SOLUTION: 5-4-3 = 60.
How many words containing a , b are there in & 7
SOLUTION : First place the characters
a,b

i.e., select the two indices of the locations to place them.
This can be done in

3 X 2 = 6 ways . ( Why 7))
There remains one position to be filled witha ¢ , d oran e.

Therefore the number of wordsis 3 x 6 = 18.
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COUNTING OUTCOMES
@ PERMUTATIONS

COMBINATIONS

45

(c) Suppose the 60 solutions in the sample space are equally likely .

What is the probability of generating a three-letter word that

contains the letters

SOLUTION :

a and b7

18
60

SUBRATA SAHA

= 0.3 .

vV(("

= a7
UNIVERSITY OF ENGINEERING & MANAGENENT

Good Education, Good Jobs

LL((Q\



SAMPLE
SPACES

45

EXERCISE :

Suppose the sample space & consists of all five-letter words
having distinct alphabetic characters .
DEFINITION

THE ALGEBRA OF EVENTS

e How many words are there in & 7
AXIOMS OF PROBABILITY

FURTHER PROPERTIES
e How many "special” words are in § for which only the second
COUNTING OUTCOMES and the fourth character are vowels, i.e., one of {a,e,i,0,u,y} 7

PERMUTATIONS

e Assuming the outcomes in § to be equally likely, what is the
probability of drawing such a special word?

COMBINATIONS

vV(("
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DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

COMBINATION

Let S be a set containing n (distinct) elements.

Then

a combination of k elements from S,
1S

any selection of k elements from S,

where order is not important .

(Thus the selection is a set .)

NOTE : By definition a set always has distinct elements .

<<
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DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

EXAMPLE :

There are three combinations of 2 elements chosen from the set
S =H{a, b, c},

namely, the subsets

{a,b} , {a,c} , {b,c} |

whereas there are six words of 2 elements from S .

namely,

ab, ba , ac,ca , bc, cb.

<<
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AXIOMS OF PROBABILITY
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COUNTING OUTCOMES
PERMUTATIONS

COMBINATIONS

45

In general, given

aset S of n elements ,

the number of possible subsets of £ elements from S equals

REMARK : The notation

NOTE :

since (!

|

T
T

n n!

k k' (n—k)!

n
k

"n choose k7.

n! n!

nl (n—n)!  nl

1s referred to as

0!

(by “convenient definition” !) .

SUBRATA SAHA
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DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

PROOF :

First recall that there are

nn—1)(n—-2) - (n—k+1) =

possible sequences of k distinct elements from § .

However, every sequence of length k& has k! permutations of itself,
and each of these defines the same subset of S.

Thus the total number of subsets is

n! B n
El(n—Fk)! k
¢ N
WUEMy
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COUNTING OUTCOMES
PERMUTATIONS

COMBINATIONS

45

EXAMPLE :

In the previous example, with 2 elements chosen from the set

{a, b, c},

we have n =3 and k=2, so that there are
3!
(3 —2)!

= 6 words ,

namely
ab, ba , ac, ca , bec, cb

while there are
3 3!

9 = B2 = 3 subsets ,

W B!

namely

{a,b} , {a,c} , {b,c}.
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EXAMPLE : If we choose 3 elements from {a , b, ¢, d} , then

n =4 and £k = 3,
so there are

4—! = 24 words, namely

(4 — 3)! ’ §
abc , abd ., acd , bed
acb , adb ., ade , bde
bac ., bad . cad , cbd
bca , bda , cda , cdb
cab . dab , dac dbc

cba . dba , deca ., dcb
while there are
4 4! 24
= = 4 subsets ,

3) T 3 @d—3! 6

namely,

{a,b,¢} , {a,b,d} , {a,c,d} , {bc,d}.

<<
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DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

EXAMPLE :

(a) How many ways are there to choose a committee of 4 persons

from a group of 10 persons, if order is not important?

SOLUTION :

10\ 10!
4 41 (10 — 4)!

210 .

(b) If each of these 210 outcomes is equally likely then what is the
probability that a particular person is on the committee?

SOLUTION :

BIGEE T

Is this result surprising?

SUBRATA SAHA
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SAMPLE (¢) What is the probability that a particular person is not on the
SPACES

45

committee?
SOLUTION :
DEFINITION 9 10 126 § : .
(4) / ( 4 ) o0 100 (W)

! - : . ! ! . L 1» \.'?
XIOMS OF PROBABILITY [s this result surprising?

FURTHER PROPERTIES
(d) How many ways are there to choose a committee of 4 persons
el UINOEN (2 from a group of 10 persons, if one is to be the chairperson?

PERMUTATIONS SOLUTION .

10 9 9 9!
(1) (3) ~ 10 (3) — 10 gy = B0

QUESTION : Why is this four times the number in (a) 7
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DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

EXAMPLE : Two balls are selected at random from a bag with
four white balls and three black balls, where order is not important.

What would be an appropriate sample space & 7
SOLUTION : Denote the set of balls by
B = {w;, wy, ws, wy, by, by, bs} .
where same color balls are made “distinct” by numbering them.
Then a good choice of the sample space is
S = theset of all subsets of two balls from B ,
because the wording " selected at random 7 suggests that each such

subset has the same chance to be selected.

The number of outcomes in § (which are sets of two balls) is then

7
= 21.
2
1 N
(VEW)
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SAMPLE
SPACES

DEFINITION

THE ALGEBRA OF EVENTS
AXIOMS OF PROBABILITY
FURTHER PROPERTIES
COUNTING OUTCOMES
PERMUTATIONS

COMBINATIONS

45

EXAMPLE : ( continued --- )

(Two balls are selected at random from a bag with four white balls
and three black balls.)

e What is the probability that both balls are white?

SOLUTION : A / N6 2
2 2) 21 7

e What is the probability that both balls are black?

SOLUTION : 5 / N3 1
2 2/ 21 7

e What is the probability that one is white and one is black?

SOLUTION : A ; / N 43 4
1 1 2/ 21 T

(Could this have been computed differently?)

\ 074
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SPACES
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DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

EXAMPLE : ( continued ---)

In detail, the sample space § is

{ {wi,wa}, {wr,ws}, {wi,ws}, | {wr, b1}, {wi, b2}, {wi,bs},
{wo,ws}, {wa,wa}, | {ws, b1}, {wa, b2}, {ws, b3},

|

|

{ws, wa}, {ws, b1}, {ws. b2}, {ws.bs},
{’U»-’ala b1 }} {“f"al: by }1 {“"4: b3 }:
{61152}: {bl:bii}}
S has 21 outcomes, each of which s a set . {b2, b3}

We assumed each outcome of & has probability ﬁ

The event "both balls are white” contains 6 outcomes.

The event "both balls are black”™ contains 3 outcomes.

The event "one is white and one is black” contains 12 outcomes.

What would be different had we worked with sequences ?

N\

<<

= a7
UNVERSIY OF ENGINEERING & NANAGENENT

S U B RATA S AH A Good Education, Good Jobs

VZanN

[
S



EXERCISE :

SAMPLE

SPACES Three balls are selected at random from a bag containing
DEFINITION 2 red , 3 green , 4 blue balls .
THE ALGEBRA OF EVENTS

45

What would be an appropriate sample space § 7

AXIOMS OF PROBABILITY
What is the the number of outcomes in S ?

FURTHER PROPERTIES

What is the probability that all three balls are red 7
COUNTING OUTCOMES

PERMUTATIONS What is the probability that all three balls are green 7

COMBINATIONS . - p
What is the probability that all three balls are blue 7

What is the probability of one red, one green, and one blue ball 7

vV(("
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SAMPLE
SPACES

45

DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

EXAMPLE : A bag contains 4 black balls and 4 white balls.
Suppose one draws two balls at the time, until the bag is empty.

What is the probability that each drawn pair is of the same color?

SOLUTION : An example of an outcome in the sample space S is

{ {wi,ws} , {wa, b3}, {we, b1}, {ba,bs} } .

The number of such doubly unordered outcomes in & is

1 /8\ (6 [4) (2 1 8 6 4 20 1 8! R
Al (2) (2) (2) (2) 41206120 4121212001 41 (21)! = 105 (Why?)

The number of such outcomes with pairwise the same color is

LEE) HEE) - es o o

Thus the probability each pair is of the same coloris 9/105 = 3/35.
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DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

EXAMPLE :

( continued - - )

The 9 outcomes of pairwise the same color constitute the event

{ { {’-:'1,-'1’?1,?2} . {'[1/.'3"“,.'4} ; {511

{wy,ws} , {wa,wye} , {b1,
{wy,wya} , {wa, w3}, {b1,

— = =" — — ="

{wi,we} , {ws,wa} , {b1,
{wi,ws} , {wa,ws} , {b1,
{wy,wy} , {wa, w3}, {b1,

{wi,we} , {ws,ws} , {1,
{wi,ws} , {wa,ws} , {b1,

{wy,wy} , {wa, w3}, {by,

b?} 3
b?} )

b?} ’

b3} .
b3} .
b3} .

bﬁl} 3
54} )

bcl} 3

SUBRATA SAHA
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SAMPLE
SPACES

DEFINITION

THE ALGEBRA OF EVENTS
AXIOMS OF PROBABILITY
FURTHER PROPERTIES
COUNTING OUTCOMES
PERMUTATIONS

@ COMBINATIONS

45

EXERCISE :

e How many ways are there to choose a committee of 4 persons
from a group of 6 persons, if order is not important?
e Write down the list of all these possible committees of 4 persons.
e If each of these outcomes is equally likely then what is the
probability that two particular persons are on the committee?
EXERCISE :

Two balls are selected at random from a bag with three white balls
and two black balls.

Show all elements of a suitable sample space.

What is the probability that both balls are white?
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EXERCISE :

We are interested in birthdays in a class of 60 students.

e What is a good sample space & for this purpose?

e How many outcomes are there in & 7

e What is the probability of no common birthdays in this class?

e What is the probability of common birthdays in this class?
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EXAMPLE :

How many nonnegative integer solutions are there to

SAMPLE

SPACES
r1 + 19 + 13 = 177

DEFINITION

THE ALGEBRA OF EVENTS S OLUTION .

Consider seventeen 1's separated by bars to indicate the possible
AXIOMS OF PROBABILITY .
values of xy, x,, and x3, e.g.,

FURTHER PROPERTIES
[11f111111111f11111 .
COUNTING OUTCOMES

The total number of positions in the “display” is 17+ 2 =19 .

PERMUTATIONS

The total number of nonnegative solutions is now seen to be
@ COMBINATIONS *

19 19! 19 x 18

- - — 171 .
2 (19 — 2)! 2! 2
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EXAMPLE :

How many nonnegative integer solutions are there to the inequality

r1 + To + Iy E 17 7

SOLUTION :

Introduce an auxiliary variable (or ”slack variable” )
€Iy p— ].7 — (fﬂl + Lo —+ .'L';.;) .
Then
il —|— Lo —|— L —|— Xy = 17 .
Use seventeen 1's separated by 3 bars to indicate the possible values
of 1, w9 . x3, and x4, e.q.,

111|11111111|1111[11 .
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DEFINITION
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AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

111|11111111|1111[11 .

The total number of positions is

17 + 3 = 20.

The total number of nonnegative solutions is therefore

(

20
3

)

20! 20 x 19 x 18

(20 — 3)! 3!

SUBRATA SAHA
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EXAMPLE :
How many positive integer solutions are there to the equation

T, + To + x3 = 17 7

SOLUTION : Let

£, = Fl —|— 1

Then the problem becomes :
How many nonnegative integer solutions are there to the equation
T + To + 23 = 14 7
111/11111111111
The solution is

' 16! 1 15
1‘6 — 0 _ 16x15 o
2 (16 — 2)! 2! 2
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EXAMPLE :
What is the probability the sum is 9 in three rolls of a die 7

of three rolls with

SOLUTION : The number of such

sum 9 is the number of integer solutions of

= 9

SEJUETCES

wis) —|_ Lo —I_ L3
with

Let

Then the problem becomes :

How many nonnegative integer solutions are there to the equation

i T, + 19 + 13 = 6

with
0 E .'i'l ] .'i‘g . .'i';;
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DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

EXAMPLE : ( continued ---)

Now the equation

T + a2 + 13 = 6, (0 < &1, T2, 23 < 5H),
1[111]11

has

8 i o
( 2) = 28 solutions ,
from which we must subtract the 3 impossible solutions
(T,79,23) = (6,0,0) , (0,6,0) , (0,0,6).

111111} , 111111| o, ||111111

Thus the probability that the sum of 3 rolls equals 9 is

28 — 3 25
— = = 0.116 .
63 216
{UEM)
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DEFINITION

THE ALGEBRA OF EVENTS

AXIOMS OF PROBABILITY

FURTHER PROPERTIES

COUNTING OUTCOMES

PERMUTATIONS

COMBINATIONS

EXAMPLE : ( continued --- )

The 25 outcomes of the event "the sum of the rolls is 9”7 are

{ 126, 135, 144, 153, 162,

216, 225, 234, 243

315 324, 333, 342, 351,

414, 423, 432, 441,
513, 522, 531

612, 621  }.

The "lexicographic” ordering of the outcomes (which are sequences)

in this event is used for systematic counting.
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SAMPLE EXERCISE :
e How many integer solutions are there to the inequality
DEFINITION
T + 19 + 13 < 17
THE ALGEBRA OF EVENTS
if we require that
AXIOMS OF PROBABILITY
rn >1 , 19 > 2 , x3 > 37

FURTHER PROPERTIES
COUNTING OUTCOMES

PERMUTATIONS

EXERCISE :

@ COMBINATIONS

What is the probability that the sum is less than

45 in three rolls of a die ?
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THANK YOU
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