

AGENDA

INDEPENDENT EVENTS

3 INDEPENDENT
EVENTS

Giving more information can change the probability of an event.

EXAMPLE:

If a coin is tossed two times then what is the probability of two Heads?

ANSWER:

 $\frac{1}{4}$

EXAMPLE:

If a coin is tossed two times then what is the probability of two Heads, given that the first toss gave Heads?

ANSWER:

 $\frac{1}{2}$

NOTE:

4 INDEPENDENT
EVENTS

Several examples will be about $playing \ cards$.

A standard deck of $playing \ cards$ consists of 52 cards:

• Four *suits*:

 ${\bf Hearts}$, ${\bf Diamonds}$ $({\it red}$) , and Spades , Clubs $({\it black})$.

- Each suit has 13 cards, whose denomination is $2\ ,\ 3\ ,\ \cdots\ ,10\ ,\ Jack\ ,\ Queen\ ,\ King\ ,\ Ace\ .$
- The Jack , Queen , and King are called *face cards* .

CONDITIONAL **PROBABILITY** 5 INDEPENDENT **EVENTS** 28

EXERCISE:

Suppose we draw a card from a shuffled set of 52 playing cards.

- What is the probability of drawing a Queen?
 - What is the probability of drawing a Queen, given that the card drawn is of *suit* Hearts?
- What is the probability of drawing a Queen, given that the card drawn is a Face card?

What do the answers tell us?

(We'll soon learn the events "Queen" and "Hearts" are *independent*.)

CONDITIONAL **PROBABILITY** 6 INDEPENDENT **EVENTS** 28

The two preceding questions are examples of *conditional probability*Conditional probability is an *important* and *useful* concept.

If E and F are events, i.e., subsets of a sample space \mathcal{S} , then $P(E|F) \quad \text{is the conditional probability of } E \text{ , given } F \text{ ,}$

defined as
$$P(E|F) \ \equiv \ \frac{P(EF)}{P(F)} \; . \label{eq:period}$$

or, equivalently

$$P(EF) = P(E|F) P(F) ,$$

(assuming that P(F) is not zero).

28

What is P(E|F) in each of these two cases?

8 INDEPENDENT EVENTS

28

Suppose that the 6 outcomes in \mathcal{S} are equally likely.

What is P(E|F) in each of these two cases?

9 INDEPENDENT

EVENTS

EXAMPLE: Suppose a coin is tossed two times.

The sample space is

$$\mathcal{S} = \{HH, HT, TH, TT\}.$$

Let E be the event "two Heads", i.e.,

$$E = \{HH\} .$$

Let F be the event "the first toss gives Heads" , i.e., $F \ = \ \{HH \ , \ HT\} \ .$

Then

$$EF = \{HH\} = E \quad (\text{ since } E \subset F).$$

We have

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{P(E)}{P(F)} = \frac{\frac{1}{4}}{\frac{2}{1}} = \frac{1}{2}.$$

INDEPENDENT EVENTS

28

EXAMPLE:

Suppose we draw a card from a shuffled set of 52 playing cards.

• What is the probability of drawing a Queen, given that the card drawn is of *suit* Hearts?

ANSWER:

$$P(Q|H) = \frac{P(QH)}{P(H)} = \frac{\frac{1}{52}}{\frac{13}{52}} = \frac{1}{13}.$$

• What is the probability of drawing a Queen, given that the card drawn is a *Face card*?

ANSWER:

$$P(Q|F) = \frac{P(QF)}{P(F)} = \frac{P(Q)}{P(F)} = \frac{\frac{4}{52}}{\frac{12}{52}} = \frac{1}{3}.$$

(Here
$$Q \subset F$$
, so that $QF = Q$.)

The probability of an event E is sometimes computed more easily

if we condition E on another event F,

namely, from

$$P(E) = P(E(F \cup F^c))$$
 (Why?)

$$= P(EF \cup EF^c) = P(EF) + P(EF^c) \quad (Why?)$$

and

$$P(EF) = P(E|F) P(F)$$
 , $P(EF^c) = P(E|F^c) P(F^c)$,

we obtain this basic formula

$$P(E) = P(E|F) \cdot P(F) + P(E|F^c) \cdot P(F^c).$$

CONDITIONAL **PROBABILITY →** INDEPENDENT **EVENTS**

EXAMPLE: An insurance c

An insurance company has these data:

The probability of an insurance claim in a period of one year is
4 percent for persons under age 30

2 percent for persons over age 30

and it is known that

30 percent of the targeted population is under age 30.

What is the probability of an insurance claim in a period of one year

for a randomly chosen person from the targeted population?

UNIVERSITY GOOD

Let the sample space $\mathcal S$ be all persons under consideration.

Let C be the event (subset of S) of persons filing a claim.

Let U be the event (subset of S) of persons under age 30.

Then U^c is the event (subset of S) of persons over age 30.

Thus

SOLUTION:

$$P(C) = P(C|U) P(U) + P(C|U^{c}) P(U^{c})$$

$$= \frac{4}{100} \frac{3}{10} + \frac{2}{100} \frac{7}{10}$$

$$= \frac{26}{1000} = 2.6\%.$$

28

CONDITIONAL **PROBABILITY SOLUTION**: Let F be the event that the first ball is white. Then

14 INDEPENDENT

EVENTS

28

EXAMPLE:

Two balls are drawn from a bag with 2 white and 3 black balls.

There are 20 outcomes (sequences) in S. (Why?)

What is the probability that the second ball is white?

Let S be the event that the second second ball is white.

$$P(S) = P(S|F) P(F) + P(S|F^c) P(F^c) = \frac{1}{4} \cdot \frac{2}{5} + \frac{2}{4} \cdot \frac{3}{5} = \frac{2}{5}.$$

QUESTION: Is it surprising that P(S) = P(F)?

CONDITIONAL **PROBABILITY** 15 INDEPENDENT **EVENTS** 28

EXAMPLE: (continued \cdots)

Is it surprising that P(S) = P(F)?

ANSWER: Not really, if one considers the sample space \mathcal{S} :

 $\left\{ \mathbf{w}_1 \mathbf{w}_2 , \mathbf{w}_1 b_1 , \mathbf{w}_1 b_2 , \mathbf{w}_1 b_3 , \right.$

 $\mathbf{w}_2\mathbf{w}_1 \ , \quad \mathbf{w}_2b_1 \ , \quad \mathbf{w}_2b_2 \ , \quad \mathbf{w}_2b_3 \ ,$

 $b_1 \mathbf{w_1} , \quad b_1 \mathbf{w_2} , \quad b_1 b_2 , \quad b_1 b_3 ,$

 b_2 **w**₁, b_2 **w**₂, b_2b_1 , b_2b_3 ,

 $b_3\mathbf{w_1} , \quad b_3\mathbf{w_2} , \quad b_3b_1 , \quad b_3b_2$ } ,

where outcomes (sequences) are assumed equally likely.

EXAMPLE:

Suppose we draw $two \ cards$ from a shuffled set of 52 playing cards.

What is the probability that the second card is a Queen ?

16 INDEPENDENT EVENTS

ANSWER:

$$P(2^{\text{nd}} \text{ card } Q) =$$

 $P(2^{\mathrm{nd}} \operatorname{card} Q | 1^{\mathrm{st}} \operatorname{card} Q) \cdot P(1^{\mathrm{st}} \operatorname{card} Q)$

+
$$P(2^{\text{nd}} \text{ card } Q | 1^{\text{st}} \text{ card not } Q) \cdot P(1^{\text{st}} \text{ card not } Q)$$

$$= \frac{3}{51} \cdot \frac{4}{52} + \frac{4}{51} \cdot \frac{48}{52} = \frac{204}{51 \cdot 52} = \frac{4}{52} = \frac{1}{13}.$$

QUESTION: Is it surprising that $P(2^{\text{nd}} \text{ card } Q) = P(1^{\text{st}} \text{ card } Q)$?

INDEPENDENT
EVENTS

28

A useful formula that "inverts conditioning" is derived as follows:

Since we have both

$$P(EF) = P(E|F) P(F) ,$$

and

$$P(EF) = P(F|E) P(E) .$$

If $P(E) \neq 0$ then it follows that

$$P(F|E) = \frac{P(EF)}{P(E)} = \frac{P(E|F) \cdot P(F)}{P(E)}$$

and, using the earlier useful formula, we get

$$P(F|E) = \frac{P(E|F) \cdot P(F)}{P(E|F) \cdot P(F) + P(E|F^c) \cdot P(F^c)},$$

which is known as Bayes' formula.

18 INDEPENDENT
EVENTS

EXAMPLE: Suppose 1 in 1000 persons has a certain disease.

A test detects the disease in 99 % of diseased persons.

The test also "detects" the disease in 5 % of healthly persons.

With what probability does a positive test diagnose the disease?

SOLUTION: Let

$$D \sim$$
 "diseased" , $H \sim$ "healthy" , + \sim "positive".

We are given that

$$P(D) = 0.001$$
, $P(+|D) = 0.99$, $P(+|H) = 0.05$.

By Bayes' formula

$$P(D|+) = \frac{P(+|D) \cdot P(D)}{P(+|D) \cdot P(D) + P(+|H) \cdot P(H)}$$

$$= \frac{0.99 \cdot 0.001}{0.99 \cdot 0.001 + 0.05 \cdot 0.999} \cong 0.0194 \quad (!)$$

CONDITIONAL **PROBABILITY** (19) INDEPENDENT **EVENTS**

EXERCISE:

Suppose 1 in 100 products has a certain defect.

A test detects the defect in 95 % of defective products.

The test also "detects" the defect in 10 % of non-defective products.

With what probability does a positive test diagnose a defect?

EXERCISE:

Suppose 1 in 2000 persons has a certain disease.

A test detects the disease in 90 % of diseased persons.

The test also "detects" the disease in 5 % of healthly persons.

With what probability does a positive test diagnose the disease?

20 INDEPENDENT
EVENTS

28

More generally, if the sample space S is the union of disjoint events

$$\mathcal{S} = F_1 \cup F_2 \cup \cdots \cup F_n ,$$

then for any event E

$$P(F_i|E) = \frac{P(E|F_i) \cdot P(F_i)}{P(E|F_1) \cdot P(F_1) + P(E|F_2) \cdot P(F_2) + \dots + P(E|F_n) \cdot P(F_n)}$$

EXERCISE:

Machines M_1, M_2, M_3 produce these proportions of a article

Production: $M_1 : 10 \%$, $M_2 : 30 \%$, $M_3 : 60 \%$.

The probability the machines produce defective articles is

Defects: $M_1: 4\%$, $M_2: 3\%$, $M_3: 2\%$.

What is the probability a random article was made by machine M_1 , given that it is defective?

Independent Events

Two events E and F are independent if

$$P(EF) = P(E) P(F)$$
.

21 INDEPENDENT EVENTS

In this case

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{P(E) P(F)}{P(F)} = P(E) ,$$

(assuming P(F) is not zero).

Thus

knowing $\ F$ occurred doesn't change the probability of $\ E$.

EXAMPLE: Draw *one* card from a deck of 52 playing cards.

Counting outcomes we find

$$P(\text{Face Card})$$

$$= \frac{12}{52} = \frac{3}{13} ,$$

$$P(\text{Hearts})$$

$$= \frac{13}{52} = \frac{1}{4}$$
,

$$P(\text{Face Card and Hearts}) = \frac{3}{52}$$
,

Thus the events "Face Card" and "Hearts" are independent.

We see that

 $P(\text{Face Card and Hearts}) = P(\text{Face Card}) \cdot P(\text{Hearts}) = (\frac{3}{52}).$

Therefore we also have

P(Face Card|Hearts) =
$$P(\text{Face Card})$$
 (= $\frac{3}{13}$).

 $= \frac{3}{13}$.

22 INDEPENDENT

28

CONDITIONAL **PROBABILITY** 23 INDEPENDENT **EVENTS** 28

EXERCISE:

Which of the following pairs of events are independent?

drawing "Hearts" and drawing "Black", (1)

drawing "Black" and drawing "Ace", (2)

(3) the event $\{2, 3, \dots, 9\}$ and drawing "Red".

CONDITIONAL **PROBABILITY** 24 INDEPENDENT

EVENTS

28

EXERCISE: Two numbers are drawn at random from the set $\{1, 2, 3, 4\}.$

If order is not important then what is the sample space S?

Define the following functions on S:

$$X(\{i,j\}) = i+j, Y(\{i,j\}) = |i-j|.$$

Which of the following pairs of events are independent?

(1)
$$X = 5$$
 and $Y = 2$,

(2)
$$X = 5$$
 and $Y = 1$.

REMARK:

X and Y are examples of random variables. (More soon!)

25 INDEPENDENT

EVENTS

EXAMPLE: If E and F are independent then so are E and F^c .

PROOF: $E = E(F \cup F^c) = EF \cup EF^c$, where

EF and EF^c are disjoint.

Thus

$$P(E) = P(EF) + P(EF^c) ,$$

from which

$$P(EF^c) = P(E) - P(EF)$$

$$= P(E) - P(E) \cdot P(F)$$
 (since E and F independent)

$$= P(E) \cdot (1 - P(F))$$

$$= P(E) \cdot P(F^c) .$$

EXERCISE:

Prove that if E and F are independent then so are E^c and F^c .

28

NOTE: Independence and disjointness are different things!

Independent, but not disjoint.

Disjoint, but not independent.

(The six outcomes in S are assumed to have equal probability.)

If E and F are independent then P(EF) = P(E) P(F).

If E and F are disjoint then $P(EF) = P(\emptyset) = 0$.

If E and F are independent and disjoint then one has zero probability!

$$P(EFG) = P(E) P(F) P(G)$$
.

and

$$P(EF) = P(E) P(F) .$$

$$P(EG) = P(E) P(G)$$
.

$$P(FG) = P(F) P(G) .$$

27 INDEPENDENT **EVENTS**

28

EXERCISE: Are the three events of drawing

- (1) a red card,
- (2) a face card,
- (3) a Heart or Spade,

independent?

28 INDEPENDENT

EVENTS

EXERCISE:

A machine M consists of three independent parts, M_1 , M_2 , and M_3 .

Suppose that

 M_1 functions properly with probability $\frac{9}{10}$,

 M_2 functions properly with probability $\frac{9}{10}$,

 M_3 functions properly with probability $\frac{8}{10}$,

and that

the machine M functions if and only if its three parts function.

- What is the probability for the machine M to function?
- What is the probability for the machine M to malfunction?

28

SUBRATA SAHA
SUBRATAISTATAMIKARANA.CO.IN