PROBABILITY AND STATISTICS

AGENDA

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARTANCE

COVARIANCE

MARKOV'S INEQUALITY



CONTINUOUS RANDOM VARIABLES

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

DEFINITION: A continuous random variable is a function X(s) from an uncountably infinite sample space S to the real numbers \mathbb{R} ,

$$X(\cdot)$$
 : $\mathcal{S} \rightarrow \mathbb{R}$.

EXAMPLE:

Rotate a *pointer* about a pivot in a plane (like a hand of a clock).

The *outcome* is the *angle* where it stops : $2\pi\theta$, where $\theta \in (0,1]$.

A good sample space is all values of θ , i.e. $\mathcal{S} = (0,1]$.

A very simple example of a continuous random variable is $X(\theta) = \theta$.

Suppose any outcome, i.e., any value of θ is "equally likely".

What are the values of

$$P(0 < \theta \le \frac{1}{2})$$
 , $P(\frac{1}{3} < \theta \le \frac{1}{2})$, $P(\theta = \frac{1}{\sqrt{2}})$?

JOINT

The (cumulative) probability distribution function is defined as

$$F_X(x) \equiv P(X \leq x)$$
.

DISTRIBUTIONS

$$F_X(b) - F_X(a) \equiv P(a < X \le b)$$
.

MARGINAL DENSITY FUNCTIONS

We must have

INDEPENDENT CONTINUOUS RANDOM VARIABLES

$$F_X(-\infty) = 0$$
 and $F_X(\infty) = 1$,

i.e.,

Thus

$$\lim_{x \to -\infty} F_X(x) = 0 ,$$

CONDITIONAL DISTRIBUTIONS

and

$$\lim_{x \to \infty} F_X(x) = 1.$$

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S

CHERVEHEV/

CHEBYSHEV'S INEQUALITY

Also, $F_X(x)$ is a non-decreasing function of x. (Why?)

 ${f NOTE}$: All the above is the same as for discrete random variables!

EXAMPLE: In the "pointer example", where $X(\theta) = \theta$, we have the probability distribution function

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

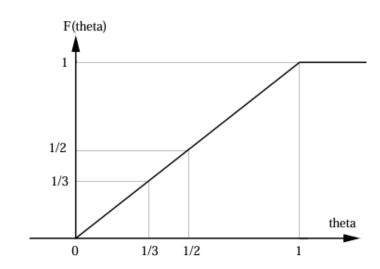
EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY



Note that

$$F(\frac{1}{3}) \equiv P(X \le \frac{1}{3}) = \frac{1}{3} , \quad F(\frac{1}{2}) \equiv P(X \le \frac{1}{2}) = \frac{1}{2} ,$$

$$P(\frac{1}{3} < X \le \frac{1}{2}) = F(\frac{1}{2}) - F(\frac{1}{3}) = \frac{1}{2} - \frac{1}{3} = \frac{1}{6} .$$

QUESTION: What is $P(\frac{1}{3} \le X \le \frac{1}{2})$?

The *probability density function* is the *derivative* of the probability distribution function :

JOINT DISTRIBUTIONS

$$f_X(x) \equiv F'_X(x) \equiv \frac{d}{dx} F_X(x)$$
.

MARGINAL DENSITY FUNCTIONS

EXAMPLE: In the "pointer example"

INDEPENDENT CONTINUOUS RANDOM VARIABLES

$$F_X(x) = \begin{cases} 0, & x \le 0 \\ x, & 0 < x \le 1 \\ 1, & 1 < x \end{cases}$$

CONDITIONAL DISTRIBUTIONS

Thus

EXPECTATION

$$f_X(x) = F'_X(x) = \begin{cases} 0, & x \le 0 \\ 1, & 0 < x \le 1 \\ 0, & 1 < x \end{cases}$$

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

NOTATION: When it is clear what X is then we also write f(x) for $f_X(x)$, and F(x) for $F_X(x)$.

JOINT

DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT **CONTINUOUS RANDOM VARIABLES**

CONDITIONAL **DISTRIBUTIONS**

EXPECTATION

VARIANCE

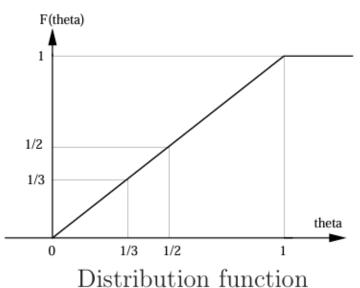
COVARIANCE

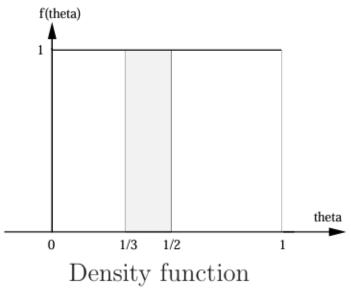
MARKOV'S INEQUALITY

CHEBYSHEV'S **INEQUALITY**

EXAMPLE: (continued \cdots)

$$F(x) = \begin{cases} 0, & x \le 0 \\ x, & 0 < x \le 1 \\ 1, & 1 < x \end{cases}$$





NOTE

$$P(\frac{1}{3} < X \le \frac{1}{2}) = \int_{\frac{1}{3}}^{\frac{1}{2}} f(x) dx = \frac{1}{6} = \text{ the shaded area }.$$

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

In general, from

with

$$F(-\infty) = 0$$
 and $F(\infty) = 1$,

 $f(x) \equiv F'(x)$,

we have from Calculus the following basic identities:

$$\int_{-\infty}^{\infty} f(x) \ dx = \int_{-\infty}^{\infty} F'(x) \ dx = F(\infty) - F(-\infty) = 1 ,$$

$$\int_{-\infty}^{x} f(x) \ dx = F(x) - F(-\infty) = F(x) = P(X \le x) ,$$

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = P(a < X \le b) ,$$

$$\int_{a}^{a} f(x) dx = F(a) - F(a) = 0 = P(X = a) .$$

EXERCISE: Draw *graphs* of the distribution and density functions

$$F(x) = \begin{cases} 0, & x \le 0 \\ 1 - e^{-x}, & x > 0 \end{cases}, \quad f(x) = \begin{cases} 0, & x \le 0 \\ e^{-x}, & x > 0 \end{cases}$$

MARGINAL DENSITY FUNCTIONS

and verify that

INDEPENDENT CONTINUOUS RANDOM VARIABLES

•
$$F(-\infty) = 0$$
, $F(\infty) = 1$,

CONDITIONAL DISTRIBUTIONS

$$\bullet \quad f(x) = F'(x) \; ,$$

EXPECTATION

• $F(x) = \int_0^x f(x) dx$, (Why is zero as lower limit OK?)

VARIANCE

$$\bullet \quad \int_0^\infty f(x) \ dx = 1 \ ,$$

COVARIANCE

•
$$P(0 < X \le 1) = F(1) - F(0) = F(1) = 1 - e^{-1} \cong 0.63$$
,

MARKOV'S INEQUALITY

•
$$P(X > 1) = 1 - F(1) = e^{-1} \cong 0.37$$
,

CHEBYSHEV'S INEQUALITY

• $P(1 < X \le 2) = F(2) - F(1) = e^{-1} - e^{-2} \cong 0.23$.

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

EXERCISE: For positive integer n, consider the density functions

$$f_n(x) = \begin{cases} cx^n(1-x^n), & 0 \le x \le 1\\ 0, & \text{otherwise} \end{cases}$$

- Determine the value of c in terms of n.
- Draw the graph of $f_n(x)$ for n = 1, 2, 4, 8, 16.
- Determine the distribution function $F_n(x)$.
- Draw the graph of $F_n(x)$ for n = 1, 2, 3, 4, 8, 16.
- Determine $P(0 \le X \le \frac{1}{2})$ in terms of n.
- What happens to $P(0 \le X \le \frac{1}{2})$ when n becomes large?
- Determine $P(\frac{9}{10} \le X \le 1)$ in terms of n.
- What happens to $P(\frac{9}{10} \le X \le 1)$ when n becomes large?

Joint distributions

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

A joint probability density function $f_{X,Y}(x,y)$ must satisfy $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1 \quad (\text{"Volume"} = 1).$

The corresponding joint probability distribution function is

$$F_{X,Y}(x,y) = P(X \le x , Y \le y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(x,y) dx dy$$
.

By Calculus we have $\frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y} = f_{X,Y}(x,y)$.

Also,

$$P(a < X \le b, c < Y \le d) = \int_{c}^{d} \int_{a}^{b} f_{X,Y}(x,y) dx dy$$
.

EXAMPLE:

DISTRIBUTIONS

If

MARGINAL DENSITY FUNCTIONS

 $f_{X,Y}(x,y) = \begin{cases} 1 & \text{for } x \in (0,1] \text{ and } y \in (0,1], \\ 0 & \text{otherwise} \end{cases}$

INDEPENDENT CONTINUOUS RANDOM VARIABLES then, for $x \in (0, 1]$ and $y \in (0, 1]$,

CONDITIONAL DISTRIBUTIONS

 $F_{X,Y}(x,y) = P(X \le x, Y \le y) = \int_0^y \int_0^x 1 \, dx \, dy = xy.$

EXPECTATION

Thus

VARIANCE

 $F_{X,Y}(x,y) = xy$, for $x \in (0,1]$ and $y \in (0,1]$.

COVARIANCE

For example

MARKOV'S INEQUALITY

 $P(X \le \frac{1}{3}, Y \le \frac{1}{2}) = F_{X,Y}(\frac{1}{3}, \frac{1}{2}) = \frac{1}{6}.$

13

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

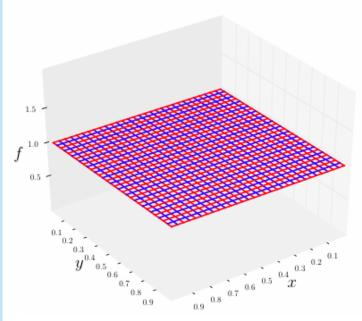
EXPECTATION

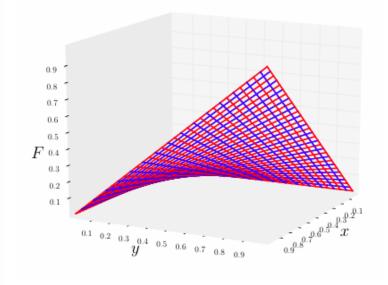
VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY





Also,

$$P(\frac{1}{3} \le X \le \frac{1}{2}, \frac{1}{4} \le Y \le \frac{3}{4}) = \int_{\frac{1}{4}}^{\frac{3}{4}} \int_{\frac{1}{3}}^{\frac{1}{2}} f(x, y) dx dy = \frac{1}{12}.$$

EXERCISE: Show that we can also compute this as follows:

$$F(\frac{1}{2}, \frac{3}{4}) - F(\frac{1}{3}, \frac{3}{4}) - F(\frac{1}{2}, \frac{1}{4}) + F(\frac{1}{3}, \frac{1}{4}) = \frac{1}{12}$$

and explain why!

Marginal density functions

JOINT DISTRIBUTIONS

MARGINAL DENSITY

FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

The marginal density functions are

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$
 , $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx$.

with corresponding marginal distribution functions

$$F_X(x) \equiv P(X \le x) = \int_{-\infty}^x f_X(x) dx = \int_{-\infty}^x \int_{-\infty}^\infty f_{X,Y}(x,y) dy dx$$

$$F_Y(y) \equiv P(Y \le y) = \int_{-\infty}^y f_Y(y) \, dy = \int_{-\infty}^y \int_{-\infty}^\infty f_{X,Y}(x,y) \, dx \, dy$$
.

By Calculus we have

$$\frac{dF_X(x)}{dx} = f_X(x) \qquad , \qquad \frac{dF_Y(y)}{dy} = f_Y(y) .$$

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

EXAMPLE: If
$$f_{X,Y}(x,y) = \begin{cases} 1 & \text{for } x \in (0,1] \text{ and } y \in (0,1], \\ 0 & \text{otherwise}, \end{cases}$$

then, for $x \in (0, 1]$ and $y \in (0, 1]$,

$$f_X(x) = \int_0^1 f_{X,Y}(x,y) dy = \int_0^1 1 dy = 1,$$

$$f_Y(y) = \int_0^1 f_{X,Y}(x,y) dx = \int_0^1 1 dx = 1$$

$$F_X(x) = P(X \le x) = \int_0^x f_X(x) dx = x$$

$$F_Y(y) = P(Y \le y) = \int_0^y f_Y(y) \, dy = y$$
.

For example

$$P(X \le \frac{1}{3}) = F_X(\frac{1}{3}) = \frac{1}{3}$$
, $P(Y \le \frac{1}{2}) = F_Y(\frac{1}{2}) = \frac{1}{2}$.

JOINT **DISTRIBUTIONS**

> **MARGINAL DENSITY FUNCTIONS**

INDEPENDENT **CONTINUOUS RANDOM VARIABLES**

CONDITIONAL **DISTRIBUTIONS**

EXPECTATION

VARIANCE

COVARIANCE

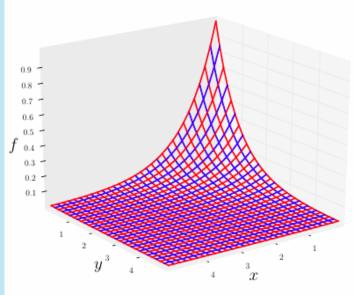
MARKOV'S **INEQUALITY**

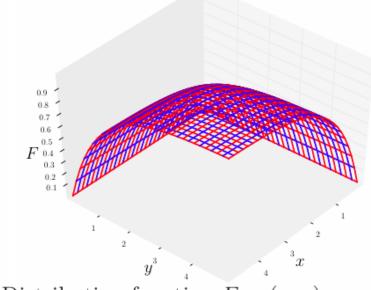
CHEBYSHEV'S **INEQUALITY**

$$\begin{array}{ll} \textbf{EXERCISE}: \\ \text{Let } F_{X,Y}(x,y) \ = \ \left\{ \begin{array}{ll} (1-e^{-x})(1-e^{-y}) & \text{for } x \geq 0 \text{ and } y \geq 0 \ , \\ 0 & \text{otherwise} \end{array} \right. ,$$

Verify that

$$f_{X,Y}(x,y) = \frac{\partial^2 F}{\partial x \partial y} = \begin{cases} e^{-x-y} & \text{for } x \ge 0 \text{ and } y \ge 0, \\ 0 & \text{otherwise}. \end{cases}$$





Distribution function $F_{X,Y}(x,y)$

EXERCISE: (continued \cdots)

$$F_{X,Y}(x,y) = (1-e^{-x})(1-e^{-y})$$
, $f_{X,Y}(x,y) = e^{-x-y}$, for $x,y \ge 0$.

JOINT DISTRIBUTIONS

Also verify the following:

MARGINAL DENSITY FUNCTIONS

•
$$F(0,0) = 0$$
 , $F(\infty, \infty) = 1$,

INDEPENDENT CONTINUOUS RANDOM VARIABLES

• $\int_0^\infty \int_0^\infty f_{X,Y}(x,y) \, dx \, dy = 1$, (Why zero lower limits?)

CONDITIONAL DISTRIBUTIONS

• $f_X(x) = \int_0^\infty e^{-x-y} dy = e^{-x}$,

EXPECTATION

• $f_Y(y) = \int_0^\infty e^{-x-y} dx = e^{-y}$.

VARIANCE

• $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$. (So?)

COVARIANCE

MARKOV'S INEQUALITY

EXERCISE: (continued \cdots)

$$F_{X,Y}(x,y) = (1-e^{-x})(1-e^{-y})$$
 , $f_{X,Y}(x,y) = e^{-x-y}$, for $x,y \ge 0$.

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

Also verify the following:

•
$$F_X(x) = \int_0^x f_X(x) dx = \int_0^x e^{-x} dx = 1 - e^{-x}$$
,

•
$$F_Y(y) = \int_0^y f_Y(y) dy = \int_0^y e^{-y} dy = 1 - e^{-y}$$
,

$$\bullet \quad F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y) . \tag{So?}$$

•
$$P(1 < x < \infty) = F_X(\infty) - F_X(1) = 1 - (1 - e^{-1}) = e^{-1} \cong 0.37$$
,

•
$$P(1 < x \le 2, 0 < y \le 1) = \int_0^1 \int_1^2 e^{-x-y} dx dy$$

= $(e^{-1} - e^{-2})(1 - e^{-1}) \cong 0.15$,

Independent continuous random variables

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

Recall that two events E and F are independent if P(EF) = P(E) P(F) .

Continuous random variables X(s) and Y(s) are independent if

$$P(X \in I_X, Y \in I_Y) = P(X \in I_X) \cdot P(Y \in I_Y),$$

for all allowable sets I_X and I_Y (typically intervals) of real numbers.

Equivalently, X(s) and Y(s) are independent if for all such sets I_X and I_Y the *events*

$$X^{-1}(I_X)$$
 and $Y^{-1}(I_Y)$,

are independent in the sample space S.

NOTE:
$$X^{-1}(I_X) \equiv \{s \in \mathcal{S} : X(s) \in I_X\},$$

 $Y^{-1}(I_Y) \equiv \{s \in \mathcal{S} : Y(s) \in I_Y\}.$

FACT: X(s) and Y(s) are independent if for all x and y $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y) .$

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

EXAMPLE: The random variables with density function

$$f_{X,Y}(x,y) = \begin{cases} e^{-x-y} & \text{for } x \ge 0 \text{ and } y \ge 0, \\ 0 & \text{otherwise}, \end{cases}$$

are *independent* because (by the preceding exercise)

$$f_{X,Y}(x,y) = e^{-x-y} = e^{-x} \cdot e^{-y} = f_X(x) \cdot f_Y(y)$$
.

NOTE:

$$F_{X,Y}(x,y) = \begin{cases} (1 - e^{-x})(1 - e^{-y}) & \text{for } x \ge 0 \text{ and } y \ge 0, \\ 0 & \text{otherwise}, \end{cases}$$

also satisfies (by the preceding exercise)

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$$
.

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

PROPERTY:

For independent continuous random variables X and Y we have

$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$$
, for all x, y .

PROOF:

$$F_{X,Y}(x,y) = P(X \le x, Y \le y)$$

$$=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(x,y) dy dx$$

$$=\int_{-\infty}^{x} \int_{-\infty}^{y} f_X(x) \cdot f_Y(y) dy dx$$
 (by independence)

$$=\int_{-\infty}^{x} [f_X(x) \cdot \int_{-\infty}^{y} f_Y(y) dy] dx$$

$$= \left[\int_{-\infty}^{x} f_X(x) dx \right] \cdot \left[\int_{-\infty}^{y} f_Y(y) dy \right]$$

$$= F_X(x) \cdot F_Y(y)$$
.

 ${f REMARK}$: Note how the proof parallels that for the discrete case !

Conditional distributions

Let X and Y be continuous random variables.

For given allowable sets I_X and I_Y (typically *intervals*), let

$$E_x = X^{-1}(I_X)$$
 and $E_y = Y^{-1}(I_Y)$,

be their corresponding *events* in the sample space \mathcal{S} .

We have
$$P(E_x|E_y) \equiv \frac{P(E_xE_y)}{P(E_y)}$$
.

The conditional probability density function is defined as

$$f_{X|Y}(x|y) \equiv \frac{f_{X,Y}(x,y)}{f_Y(y)}$$
.

When X and Y are independent then

$$f_{X|Y}(x|y) \equiv \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{f_X(x) f_Y(y)}{f_Y(y)} = f_X(x) ,$$

(assuming $f_Y(y) \neq 0$).

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

EXAMPLE: The random variables with density function

$$f_{X,Y}(x,y) = \begin{cases} e^{-x-y} & \text{for } x \ge 0 \text{ and } y \ge 0, \\ 0 & \text{otherwise}, \end{cases}$$

MARGINAL DENSITY FUNCTIONS

have (by previous exercise) the marginal density functions

$$f_X(x) = e^{-x}$$
 , $f_Y(y) = e^{-y}$,

INDEPENDENT CONTINUOUS RANDOM VARIABLES

for $x \ge 0$ and $y \ge 0$, and zero otherwise.

CONDITIONAL DISTRIBUTIONS

Thus for such x, y we have

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)} = \frac{e^{-x-y}}{e^{-y}} = e^{-x} = f_{X}(x)$$

VARIANCE

i.e., information about Y does not alter the density function of X.

COVARIANCE

Indeed, we have already seen that X and Y are independent.

MARKOV'S INEQUALITY

Expectation

JOINT DISTRIBUTIONS

The expected value of a continuous random variable X is

MARGINAL DENSITY FUNCTIONS

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx ,$$

INDEPENDENT CONTINUOUS RANDOM VARIABLES which represents the average value of X over many trials.

CONDITIONAL DISTRIBUTIONS

The expected value of a function of a random variable is

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

24) EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

The expected value of a function of two random variables is

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dy dx.$$

EXAMPLE:

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

For the *pointer* experiment

$$f_X(x) = \begin{cases} 0, & x \le 0 \\ 1, & 0 < x \le 1 \\ 0, & 1 < x \end{cases}$$

we have

$$E[X] = \int_{-\infty}^{\infty} x \, f_X(x) \, dx = \int_{0}^{1} x \, dx = \frac{x^2}{2} \Big|_{0}^{1} = \frac{1}{2} \,,$$

and

$$E[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1}{3}.$$

, JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

EXAMPLE: For the joint density function

$$f_{X,Y}(x,y) = \begin{cases} e^{-x-y} & \text{for } x > 0 \text{ and } y > 0, \\ 0 & \text{otherwise.} \end{cases}$$

we have (by previous exercise) the marginal density functions

$$f_X(x) = \begin{cases} e^{-x} & \text{for } x > 0 \ , \\ 0 & \text{otherwise} \ , \end{cases} \quad \text{and} \quad f_Y(y) = \begin{cases} e^{-y} & \text{for } y > 0 \ , \\ 0 & \text{otherwise} \ . \end{cases}$$

Thus
$$E[X] = \int_0^\infty x \, e^{-x} \, dx = -[(x+1)e^{-x}]\Big|_0^\infty = 1$$
. (Check!)

Similarly $E[Y] = \int_0^\infty y \ e^{-y} \ dy = 1 ,$

and

$$E[XY] = \int_0^\infty \int_0^\infty xy \ e^{-x-y} \ dy \ dx = 1.$$
 (Check!)

EXERCISE:

Prove the following for *continuous* random variables:

$$\bullet \quad E[aX] \quad = \quad a \ E[X] \ ,$$

MARGINAL DENSITY FUNCTIONS

$$\bullet \quad E[aX+b] = a E[X] + b ,$$

INDEPENDENT CONTINUOUS RANDOM VARIABLES

$$\bullet \quad E[X+Y] = E[X] + E[Y] ,$$

CONDITIONAL DISTRIBUTIONS

and *compare* the proofs to those for *discrete* random variables.

EXPECTATION

EXERCISE:

VARIANCE

COVARIANCE

MARKOV'S

INEQUALITY

CHEBYSHEV'S **INEQUALITY**

A stick of length 1 is split at a randomly selected point X. (Thus X is uniformly distributed in the interval [0,1].)

Determine the expected length of the piece containing the point 1/3.

PROPERTY: If X and Y are independent then

$$E[XY] = E[X] \cdot E[Y] .$$

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

PROOF:

$$E[XY] = \int_{\mathbb{R}} \int_{\mathbb{R}} x y f_{X,Y}(x,y) dy dx$$

$$=\int_{\mathbb{R}}\int_{\mathbb{R}} x y f_X(x) f_Y(y) dy dx$$
 (by independence)

$$= \int_{\mathbb{R}} [x f_X(x) \int_{\mathbb{R}} y f_Y(y) dy] dx$$

$$= \left[\int_{\mathbb{R}} x f_X(x) dx \right] \cdot \left[\int_{\mathbb{R}} y f_Y(y) dy \right]$$

$$= E[X] \cdot E[Y]$$
.

REMARK: Note how the proof parallels that for the discrete case!

JOINT **DISTRIBUTIONS**

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL **DISTRIBUTIONS**

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S **INEQUALITY**

CHEBYSHEV'S **INEQUALITY**

EXAMPLE: For

$$f_{X,Y}(x,y) = \begin{cases} e^{-x-y} & \text{for } x > 0 \text{ and } y > 0 \\ 0 & \text{otherwise} \end{cases}$$

we already found

$$f_X(x) = e^{-x}$$
 , $f_Y(y) = e^{-y}$,

so that

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y) ,$$

i.e., X and Y are independent.

Indeed, we also already found that

$$E[X] = E[Y] = E[XY] = 1 ,$$

so that

$$E[XY] = E[X] \cdot E[Y] .$$

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

O VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

Variance

Let
$$\mu = E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

Then the variance of the continuous random variable X is

$$Var(X) \equiv E[(X-\mu)^2] \equiv \int_{-\infty}^{\infty} (x-\mu)^2 f_X(x) dx$$

which is the average weighted square distance from the mean.

As in the discrete case, we have

$$Var(X) = E[X^2 - 2\mu X + \mu^2]$$

$$= E[X^2] - 2\mu E[X] + \mu^2 = E[X^2] - \mu^2 .$$

The standard deviation of X is

$$\sigma(X) \equiv \sqrt{Var(X)} = \sqrt{E[X^2] - \mu^2}$$
.

which is the average weighted *distance* from the mean.

ES

EXAMPLE: For $f(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & x \le 0, \end{cases}$ we have

 $Var(X) = E[X^2] - \mu^2 = 2 - 1^2 = 1$,

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS $E[X] = \mu = \int_0^\infty \ x \ e^{-x} \ dx = 1$ (already done !) ,

INDEPENDENT CONTINUOUS RANDOM

VARIABLES

 $E[X^2] = \int_0^\infty x^2 e^{-x} dx = -[(x^2 + 2x + 2)e^{-x}]\Big|_0^\infty = 2,$

CONDITIONAL DISTRIBUTIONS

 $\sigma(X) = \sqrt{Var(X)} = 1$.

EXPECTATION

NOTE: The two integrals can be done by "integration by parts".

VARIANCE

EXERCISE :

COVARIANCE MARKOV'S

INEQUALITY

Also use the $Method\ of\ Moments$ to compute $\ E[X]$ and $\ E[X^2]$.

EXERCISE: For the random variable X with density function

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

$$f(x) = \begin{cases} 0, & x \le -1 \\ c, & -1 < x \le 1 \\ 0, & x > 1 \end{cases}$$

- Determine the value of c
- Draw the graph of f(x)
- Determine the distribution function F(x)
- Draw the graph of F(x)
- Determine E[X]
- Compute Var(X) and $\sigma(X)$
- Determine $P(X \le -\frac{1}{2})$
- Determine $P(|X| \ge \frac{1}{2})$

EXERCISE: For the random variable X with density function

3 VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

$$f(x) = \begin{cases} 0, & x \le -1 \\ c, & -1 < x \le 1 \\ 0, & x > 1 \end{cases}$$

- Determine the value of c
- Draw the graph of f(x)
- Determine the distribution function F(x)
- Draw the graph of F(x)
- Determine E[X]
- Compute Var(X) and $\sigma(X)$
- Determine $P(X \le -\frac{1}{2})$
- Determine $P(|X| \ge \frac{1}{2})$

EXERCISE: For the random variable X with density function

$$f(x) = \begin{cases} \frac{3}{4} (1 - x^2), & -1 < x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

MARGINAL DENSITY FUNCTIONS

• Draw the graph of f(x)

INDEPENDENT CONTINUOUS RANDOM VARIABLES • Verify that $\int_{-\infty}^{\infty} f(x) dx = 1$

CONDITIONAL DISTRIBUTIONS

• Determine the distribution function F(x)

• Draw the graph of F(x)

EXPECTATION

• Determine E[X]

4 VARIANCE

• Compute Var(X) and $\sigma(X)$

COVARIANCE

Determine $P(X \le 0)$

MARKOV'S INEQUALITY • Compute $P(X \ge \frac{2}{3})$

CHEBYSHEV'S INEQUALITY

• Compute $P(|X| \ge \frac{2}{3})$

EXERCISE: Recall the density function

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

$$f_n(x) = \begin{cases} cx^n(1-x^n), & 0 \le x \le 1\\ 0, & \text{otherwise} \end{cases}$$

considered earlier, where n is a positive integer, and where

$$c = \frac{(n+1)(2n+1)}{n} .$$

- Determine E[X].
- What happens to E[X] for large n?
- Determine $E[X^2]$
- What happens to $E[X^2]$ for large n?
- What happens to Var(X) for large n?

Covariance

Let X and Y be continuous random variables with mean

$$E[X] = \mu_X , \quad E[Y] = \mu_Y .$$

Then the *covariance* of X and Y is

$$Cov(X,Y) \equiv E[(X - \mu_X)(Y - \mu_Y)]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X) (y - \mu_Y) f_{X,Y}(x,y) dy dx.$$

As in the discrete case, we have

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= E[XY - \mu_X Y - \mu_Y X + \mu_X \mu_Y]$$

$$= E[XY] - E[X] E[Y] .$$

JOINT **DISTRIBUTIONS**

MARGINAL **DENSITY FUNCTIONS**

INDEPENDENT **CONTINUOUS RANDOM VARIABLES**

CONDITIONAL **DISTRIBUTIONS**

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S **INEQUALITY**

As in the discrete case, we also have

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S
INEQUALITY

CHEBYSHEV'S

INEQUALITY

PROPERTY 1:

 $\bullet \quad Var(X+Y) = Var(X) + Var(Y) + 2 Cov(X,Y) ,$

and

PROPERTY 2: If X and Y are independent then

 $\bullet \quad Cov(X,Y) = 0 ,$

• Var(X + Y) = Var(X) + Var(Y).

NOTE:

- The proofs are identical to those for the discrete case!
- As in the discrete case, if Cov(X,Y) = 0 then X and Y are not necessarily independent!

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

EXAMPLE: For

$$f_{X,Y}(x,y) = \begin{cases} e^{-x-y} & \text{for } x > 0 \text{ and } y > 0, \\ 0 & \text{otherwise,} \end{cases}$$

we already found

$$f_X(x) = e^{-x}$$
 , $f_Y(y) = e^{-y}$,

so that

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y) ,$$

i.e., X and Y are independent.

Indeed, we also already found

$$E[X] = E[Y] = E[XY] = 1 ,$$

so that

$$Cov(X,Y) = E[XY] - E[X] E[Y] = 0.$$

EXERCISE:

Verify the following properties:

JOINT DISTRIBUTIONS

 $\bullet \quad Var(cX+d) = c^2 \ Var(X) \ ,$

MARGINAL DENSITY FUNCTIONS

 $\bullet \quad Cov(X,Y) = Cov(Y,X) ,$

INDEPENDENT CONTINUOUS RANDOM VARIABLES

• Cov(cX, Y) = c Cov(X, Y),

CONDITIONAL DISTRIBUTIONS

 $\bullet \quad Cov(X, cY) = c \ Cov(X, Y) \ ,$

EXPECTATION

 $\bullet \quad Cov(X+Y,Z) = Cov(X,Z) + Cov(Y,Z) ,$

VARIANCE

 $\bullet \quad Var(X+Y) = Var(X) + Var(Y) + 2 Cov(X,Y) .$

COVARIANCE

MARKOV'S

CHEBYSHEV'S INEQUALITY

INEQUALITY

4

EXERCISE:

JOINT DISTRIBUTIONS

MARGINAL DENSITY

FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

For the random variables X, Y with joint density function

$$f(x,y) = \begin{cases} 45xy^2(1-x)(1-y^2), & 0 \le x \le 1, 0 \le y \le 1 \\ 0, & \text{otherwise} \end{cases}$$

- Verify that $\int_0^1 \int_0^1 f(x,y) dy dx = 1$.
- Determine the marginal density functions $f_X(x)$ and $f_Y(y)$.
- Are X and Y independent?
- What is the value of Cov(X,Y)?

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

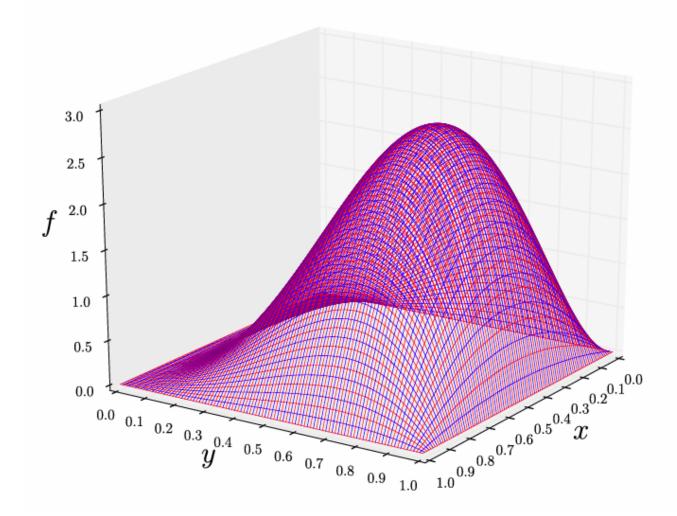
EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY



The joint probability density function $f_{XY}(x,y)$.

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

Markov's inequality.

For a continuous $\ nonnegative\$ random variable $\ X$, and $\ c>0$, we have

$$P(X \ge c) \le \frac{E[X]}{c} .$$

PROOF:

$$E[X] = \int_0^\infty x f(x) \, dx = \int_0^c x f(x) \, dx + \int_c^\infty x f(x) \, dx$$

$$\geq \int_c^\infty x f(x) \, dx$$

$$\geq c \int_c^\infty f(x) \, dx \qquad (Why?)$$

$$= c P(X \geq c).$$

EXERCISE:

Show Markov's inequality also holds for discrete random variables.

JOINT

Markov's inequality: For continuous nonnegative X, c > 0:

$$P(X \ge c) \le \frac{E[X]}{c}$$
.

DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL **DISTRIBUTIONS**

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S

INEQUALITY

CHEBYSHEV'S **INEQUALITY**

we have

EXAMPLE: For
$$f(x) = \begin{cases} e^{-x} & \text{for } x > 0 \ , \\ 0 & \text{otherwise} \end{cases}$$
,

$$E[X] = \int_0^\infty x \, e^{-x} \, dx = 1 \qquad \text{(already done!)}$$

Markov's inequality gives

$$c = 1$$
: $P(X \ge 1) \le \frac{E[X]}{1} = \frac{1}{1} = 1 \ (!)$

$$c = 10$$
: $P(X \ge 10) \le \frac{E[X]}{10} = \frac{1}{10} = 0.1$

QUESTION: Are these estimates "sharp"?

DISTRIBUTIONS

MARGINAL

INDEPENDENT

CONTINUOUS

RANDOM VARIABLES

DENSITY FUNCTIONS

JOINT

QUESTION: Are these estimates "sharp"?

Markov's inequality gives

$$c = 1$$
: $P(X \ge 1) \le \frac{E[X]}{1} = \frac{1}{1} = 1 \ (!)$

$$c = 10$$
: $P(X \ge 10) \le \frac{E[X]}{10} = \frac{1}{10} = 0.1$

The actual values are

$$P(X \ge 1) = \int_{1}^{\infty} e^{-x} dx = e^{-1} \cong 0.37$$

$$P(X \ge 10) = \int_{10}^{\infty} e^{-x} dx = e^{-10} \cong 0.000045$$

EXPECTATION

CONDITIONAL

DISTRIBUTIONS

VARIANCE

COVARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

EXERCISE: Suppose the score of students taking an examination is a random variable with mean 65.

Give an upper bound on the probability that a student's score is greater than 75 .

Chebyshev's inequality: For (practically) any random variable X:

$$P(\mid X - \mu \mid \geq k \sigma) \leq \frac{1}{k^2},$$

where
$$u = E[V]$$
 is the mass $\sigma = \sqrt{Van(V)}$ the standard devi

where $\mu = E[X]$ is the mean, $\sigma = \sqrt{Var(X)}$ the standard deviation.

PROOF: Let $Y \equiv (X - \mu)^2$, which is nonnegative.

By Markov's inequality

$$P(Y \ge c) \le \frac{E[Y]}{c}$$
.

Taking $c = k^2 \sigma^2$ we have

$$P(| X - \mu | \ge k\sigma) = P((X - \mu)^2 \ge k^2 \sigma^2) = P(Y \ge k^2 \sigma^2)$$

$$\leq \frac{E[Y]}{k^2\sigma^2} = \frac{Var(X)}{k^2\sigma^2} = \frac{\sigma^2}{k^2\sigma^2} = \frac{1}{k^2}.$$
 QED!

NOTE: This inequality also holds for discrete random variables.

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

EXAMPLE: Suppose the value of the Canadian dollar in terms of the US dollar over a certain period is a random variable X with

mean $\mu = 0.98$ and standard deviation $\sigma = 0.05$.

MARGINAL **DENSITY FUNCTIONS**

JOINT

What can be said of the probability that the Canadian dollar is valued between \$0.88US and \$1.08US,

INDEPENDENT CONTINUOUS RANDOM VARIABLES

that is, between $\mu - 2\sigma$ and $\mu + 2\sigma$?

CONDITIONAL **DISTRIBUTIONS**

SOLUTION: By Chebyshev's inequality we have

EXPECTATION

 $P(\mid X - \mu \mid \geq 2 \sigma) \leq \frac{1}{2^2} = 0.25.$

VARIANCE

Thus

COVARIANCE

 $P(\mid X - \mu \mid < 2 \sigma) > 1 - 0.25 = 0.75,$

MARKOV'S

that is,

INEQUALITY

P(\$0.88US < Can\$ < \$1.08US) > 75%.

CHEBYSHEV'S **INEQUALITY**

JOINT DISTRIBUTIONS

MARGINAL DENSITY FUNCTIONS

INDEPENDENT CONTINUOUS RANDOM VARIABLES

CONDITIONAL DISTRIBUTIONS

EXPECTATION

VARIANCE

COVARIANCE

MARKOV'S INEQUALITY

CHEBYSHEV'S INEQUALITY

EXERCISE:

The score of students taking an examination is a random variable with mean $\mu = 65$ and standard deviation $\sigma = 5$.

- What is the probability a student scores between 55 and 75?
- How many students would have to take the examination so that the probability that their average grade is between 60 and 70 is at least 80%?

HINT: Defining

$$\bar{X} = \frac{1}{n}(X_1 + X_2 + \cdots + X_n)$$
, (the average grade)

we have

$$\mu_{\bar{X}} = E[\bar{X}] = \frac{1}{n} n \mu = \mu = 65$$

and, assuming independence,

$$Var(\bar{X}) = n \frac{\sigma^2}{n^2} = \frac{\sigma^2}{n} = \frac{25}{n}$$
, and $\sigma_{\bar{X}} = \frac{5}{\sqrt{n}}$.

THANK YOU

SUBRATA SAHA
SUBRATAISTATAMIKARANA.CO.IN