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CONTINUOUS RANDOM VARIABLES

DEFINITION : A continuous random variable is a function X (s)
from an uncountably infinite sample space § to the real numbers R |

X S - R.
EXAMPLE :
Rotate a pointer about a pivot in a plane (like a hand of a clock).
276 , where 6 € (0,1] .
(0,1] .

A very simple example of a continuous random variableis X(0) = 6 .

The outcome is the angle where it stops :

A good sample space is all values of 0, i.e. § =

Suppose any outcome, i.e., any value of € is "equally likely”.

What are the values of

PO <6 <2 , Pz<0 <3

4 \
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The (cumulative) probability distribution function is defined as

Fx(x) = P(X <ux).
Thus

We must have

Fx(—o0) = 0 and Fx(oo) = 1
1.€.,
lim Fx(z) = 0,
and
lim Fx(z) = 1.

Also, Fx(x) is a non-decreasing function of x .

Pla< X <b).

( Why 7 )

NOTE : All the above is the same as for discrete random variables !
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EXAMPLE : In the " pointer example ", where X () = 6 , we have

the probability distribution function

Fitheta)
A
1
1/2
1/3
theta
o
0 1/3 1/2 1
Note that
F(3) = P(X<3) = 3 , F(z) = PX<3
PE<X<3) = FG-FG) = 3-3 =

SUBRATA SAHA
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The probability density function is the derivative of the probability
distribution function :

d
[x(z) = Fy(r) = — Fx(x).
dx
EXAMPLE : In the "pointer ezample ™
0., <0
Fx(x) = r, 0<ax<l1
1, 1<x
Thus
0, <0
[x(x) = Fy(z) = 1, 0<z<1
0, 1<=x
NOTATION : When it is clear what X is then we also write
f(z) for fx(z) . and F(x) for Fx(x).
(UEM)
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EXAMPLE : ( continued -
0, <0
Flx)=4¢ =, 0<a<1
1 l <
Fitheta)
A
1
1/2
1/3
theta
0 1/3 1/2 1 =
Distribution function
NOTE :
1 1 2
P(§{X£§) = | f(.’i‘”) dx

W=

SUBRATA SAHA

0, <0
fley=<¢ 1, 0<az<1
0, 1<z
fitheta)
A
1
theta
o
0 1/3 1/2 1
Density function
= —= = the shaded area .
6
v’ N
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In general, from

with
F(—o)

/_ z f(x) de

/_;f(r) dx

b

f(zx) dx

/a " ) de

flz) =

= 0

F'(z)

and F(o0)

f F'(z)de =

SUBRATA SAHA
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we have from Calculus the following basic identities :
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EXERCISE : Draw graphs of the distribution and density functions

0.
Po)={ ],

and verify that

o F(-0) = 0.

xr <0
x>0

SUBRATA SAHA
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EXERCISE : For positive integer n, consider the density functions

ct"(1l—2"), 0<z <1

fulz) =

0, otherwise

Determine the value of ¢ in terms of n .

Draw the graph of f,(z) for n=1,2,4,8,16 .

Determine the distribution function F),(z) .

Draw the graph of F,(x) for n=1,2,3,4,8,16 .
Determine P(0 < X < %) in terms of n .

What happens to P(0 < X < %) when n becomes large?
Determine P(55 < X <1) in terms of n .

What happens to P(% < X <1) when n becomes large?
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Joint distributions

A joint probability density function fxy(x,y) must satisfy

f / fxy(z,y)dedy = 1

( “Volume”

1),

The corresponding joint probability distribution function is

FX,}'

By Calculus we have

Also,

azFX,Y (‘T:‘ ?)!)
dxdy

I XY (3? ; ?}) :

y z
(r,y) = P(X<z,Y<y) = f / Ixy(x,y) dx dy .

d b
Pla<X<b,c<Y <d) = / f fxy(x,y) dv dy .

SUBRATA SAHA
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EXAMPLE :

If
1 for x € (0,1] and y € (0,1] ,

fxvy(x, ?}) —
0 otherwise

then, for x € (0,1] and y € (0,1] ,

y o pT
Fxvwy) = PX<o.v<y = [ [1dedy = ay.
0o Jo
Thus
Fyy(z,y) = =xy, for x € (0,1] and y € (0,1] .
For example
1 1 1 1 1
PlX<-=-,Y <= = F -, = = =
(X<3.¥V<3) xv(3.3) 6
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(R

L

5 ng - ’ ()
0T as gy od

X

]— < ;R: < 1— ]_ < }; < ) o % é f( ‘ ) ! ‘ !' B 1
3 B o 2 ' *1 o —/ o 1 1 . :lgg} . f@; — :12-‘

4 3
EXERCISE : Show that we can also compute this as follows :

and explain why !
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Marginal density functions

The marginal density functions are

@ = [ " frwlay) dy

fyly) = / | fx,y(:;':,y) dx .

with corresponding marginal distribution functions

Fx(.’l’:)

Y Y
Fy(y) = P(Y <y) = / fy(y)dy = /

— oG

By Calculus we have

dFX (.’I?)

dx

dFy (y)

= Jx(@) dy

SUBRATA SAHA

P(X <zx) = / fx(x)dr = / / fxy(z,y)dyde,

/ Ixy(zy)dedy.

= fr(y) .
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,fx,}' (-T-: ',U)

then, for x € (0,

For example

P(X<1)

1 for z € (0,1] and y € (0,1] ,

0 otherwise

and y € (0,1],

f fxy(z,y) dy
1

f Froy(2y) d
0]

1
= f 1 dy
0

1
= / 1 dx
0

/; fx(x) dx

/J Jy(y) dy
0

P(Y <3)

SUBRATA SAHA
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EXERCISE :
Let Fxy(z,y) =

{ (1 —e™

JOINT
DISTRIBUTIONS e Verify that
*F
Ixy(zy) = —— =
dxdy

MARGINAL
DENSITY
FUNCTIONS

INDEPENDENT
CONTINUOUS
RANDOM

VARIABLES 0 -

)

(XX
A5

CONDITIONAL ol
DISTRIBUTIONS 25 4

!
)

EXPECTATION b2 =
VARIANCE

COVARIANCE

MARKOV’'S
INEQUALITY

CHEBYSHEV’'S
INEQUALITY

Density function fxy(x,v)

SUBRATA SAHA

(1)

—x—y

{e

for >0 and y >0,
otherwise

for >0 and y >0,

0 otherwise

Distribution function Fx y(z,y)
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CONTINUOUS EXERCISE : ( continued - )

RANDOM VARIABLES
FXY( }) - (l_ﬁ_m)(l_e_y) ’ fYY( ?}) - E_m_y: for LY 2 0.

JOINT
DISTRIBUTIONS

Also verify the following :
MARGINAL

DENSITY i ¢ S
FUNCTIONS e F(0,0)=0 , F(oo,00)=1,

INDEPENDENT
CONTINUOUS I“ f
RANDOM J0 0

VARIABLES

fxyv(r,y)dedy = 1, ( Why zero lower limits 7 )

CONDITIONAL ) - 00 —x—y — -
DISTRIBUTIONS e [fx(z) = fn € dy = e ",

EXPECTATION

. — C —r—y I —y
® l — e ar = e .
VARIANCE fY ( J) f{]

COVARIANCE
MARKOV'S ¢ fX,Y(fi‘?a ?}) = fx(z) - fy(y). (Sm ';’)
INEQUALITY

CHEBYSHEV’'S
INEQUALITY

<<
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EXERCISE : ( continued ---)

Fxy(z,y) = (1—e *)(1—e ") , fxy(r,y) = e Y, forax,y>0.

Also verify the following :

e Fiy(x J;]fx ) dr = J}fe_x dx

= 1—e",

e Fy(y) fn fyv(y) dy = fﬂ eVdy = 1—eY,

o Ixy(wy) = Fx(z) - Fy(y) .

e Pll<z< o) = Fx(oco)—Fx(1) = 1—

e Pll<z<2, 0<y<l) = fnlff

— (f};_l

SUBRATA SAHA
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Independent continuous random variables

Recall that two events E and F' are independent if

P(EF) = P(E) P(F).

Continuous random variables X (s) and Y (s) are independent if
PXely,Yely) = PXelx) - PYely),

for all allowable sets I'x and Iy (typically intervals) of real numbers.

Equivalently, X(s) and Y(s) are independent if for all such sets
Ix and Iy the events

X HIx) and Y Iy),

are independent in the sample space S.

X 'Ix)={s€S8 : X(s)€lx}.
Y ' (Iy)={s€S8 : Y(s)€ly}.

NOTE :

<<
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FACT : X(s) and Y(s) are independent if for all x and y
fx(x) - fr(y) -

IX:Y (il'-'f ?f)

EXAMPLE : The random variables with density function

—z—y

forx >0 and y >0,
otherwise

[
,fX,Y(jf: y) = 0

are independent because (by the preceding exercise)

fxy(x,y) = 77 = e " e? = fx(x) fr(y).
NOTE :
N -
Fyy(z.y) = (1—e™)(1—eY) forz>0 and y >0

0 otherwise ,

also satisfies (by the preceding exercise)
Fxy(z,y) Fx(z)- Fy(y) .
U
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PROPERTY :

For independent continuous random variables X and Y we have

Fx(z) - Fy(y) ,

PROOF :
‘FX,'I’ (‘T: ?})

Fxy(z,y) =

r,Y <y)

| [x(x) - ’ﬂ_y
T fx(@)

Fx(z) - Fy(y) -

o fxy(z,y) dy dx
Y Ix(@) - fy(y) dy da

o Jy(y) dy ] de

I”)'

for all x,y .

(by independence)

fy(y) dy |

REMARK : Note how the proof parallels that for the discrete case !

SUBRATA SAHA
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Conditional distributions
Let X and Y be continuous random variables.

For given allowable sets Ix and Iy (typically intervals), let

E, = X '(Ix) and E, = Y '(Iy),
be their corresponding ewvents in the sample space § .
P(E.E,
We have P(E,|E,) = (E.E)) .
P(E,)
The conditional probability density function is defined as
- fxy(z,y)
fxy(zly) = ——F—— .
| fy ()
When X and Y are independent then
fX|Y(T|'U) — f}f,}’r(m: ?)J) f}f(j") fY(U)
| fy(y) fr(y)
(assuming [y (y) # 0 ).

SUBRATA SAHA
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EXAMPLE : The random variables with density function

E,—:l’:—y

fX,Y(‘T: ?f) —
0 otherwise

forx >0 and y >0,

have (by previous exercise) the marginal density functions

fx(@) =" fyly) = e,

for >0 and y > 0, and zero otherwise.

Thus for such z,y we have

fX._Y(:I::y) - € —x

fXIY(35|1U) = v (1) = —, = €

= Jx(x) .

i.e., information about Y does not alter the density function of X .

Indeed, we have already seen that X and Y are independent .

SUBRATA SAHA
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Expectation

The expected value of a continuous random variable X is

E[X] = / r fx(x) dx

-

which represents the average value of X over many trials.

The expected value of a function of a random variable is

By = [ o) fx@) do

oo

The expected value of a function of {wo random variables is

E[g(X.Y) / / o(2,y) Fxy(z,y) dy do

<<
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EXAMPLE :

For the pointer experiment

(0, x <0
fx(x) = < 1, D<o <1
L 0 I <a
we have
. > ! 2|1 1
FEX] = r fx(x) de = rdr = —‘ = =
— 50 0 0 2
and
o0 1 31 _I_
E[Xz] - f r fX(I”) dv = / 2 dr = —‘ = ;
— 0 ' () .

I
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EXAMPLE : For the joint density function

e ™Y forx>0 and y >0,

fX-.Y('T': ',i}") —
() otherwise .

we have (by previous exercise) the marginal density functions

e " forx >0, e Y

and  fy(y) =
0 otherwise 0

for y > 0,

[x(x) =

otherwise .

[

—[(z+1)e "] o= 1.

Thus FE[X] = / re Tdr = ( Check !)
0

Similarly E[Y] = / ye Vdy = 1,
0
and o e
EXY] = / / rye " YVdydr = 1. ( Check !)
0o Jo
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Prove the following for continuous random variables :

e FlaX| = aFE|X],
e FlaX+b = aF[X] + b,
e FX+Y] = FE[X] + EY],

and compare the proofs to those for discrete random variables.

EXERCISE :

A stick of length 1 is split at a randomly selected point X.
( Thus X is uniformly distributed in the interval [0, 1]. )

Determine the expected length of the piece containing the point 1/3.

<<

bkl
S
UNVERSTY OFENGIEERIG § HANACEUENT

S U B RATA S AH A Good Education, Good Jobs

=

L=



CONTINUOUS
RANDOM VARIABLES

47

JOINT
DISTRIBUTIONS

MARGINAL
DENSITY
FUNCTIONS

INDEPENDENT
CONTINUOUS
RANDOM
VARIABLES

CONDITIONAL
DISTRIBUTIONS

EXPECTATION
VARIANCE

COVARIANCE

MARKOV’'S
INEQUALITY

CHEBYSHEV’'S
INEQUALITY

PROPERTY :

PROOF

E[XY]

REMARK :

E[XY]

~ E[X] - ElY].

I]E f]g ry fxy(lx,y) dydx

fE fE vy [x(x) fy(y) dydx

fR[ r [x(a
Je @ [x(2

) Je v fy(y) dy ] da

yde | - [[p v frly) dy |

E[X]- E[Y] .

If X and Y are independent then

(by independence)

Note how the proof parallels that for the discrete case !

SUBRATA SAHA
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INEQUALITY

EXAMPLE : For ety forx >0 and y >0

fxy(z,y) =
0 otherwise ,
we already found

so that

fxy(x,y) = fx(x) - fr(y) .

.e., X and Y are independent .

Indeed, we also already found that
F|X] = EY] = FXY] = 1,

so that
E[XY] = E[)ﬁ] ~ E[Y]
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Variance
e #)
Let n = FE[X| = f r fx(x) dz
—
Then the wvariance of the continuous random variable X is

Var(X) = E[ (X —p)?] = -/: | (x — p1)? fx(x) do

which is the average weighted square distance from the mean.

As in the discrete case, we have

Var(X) = E[X?-2uX + u?
= E[Xz] —2;;..E[X] + ;;..2 = E[XZ] — ,u..z.
The standard deviation of X 1is

o(X) = VVar(X) = VE[X?] — u?.

which is the average weighted distance from the mean.
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EXAMPLE : For f(z) = {E— z>0,

0 r <0
we have
EX] = p = [T xze®dr = 1 (already done!) .
EX?* = [T 2*edr = —|[(2*+2x+2)e ;O = 2,
Var(X) = EXY—p2 = 2 — 12 = 1,

NOTE : The two integrals can be done by “integration by parts”

EXERCISE :
Also use the Method of Moments to compute FE[X] and FE[X?].
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EXERCISE : For the random variable X with density function

0, < —1
flx) = c, —l<z<l1
x> 1

e Determine the value of ¢

e Draw the graph of f(x)

e Determine the distribution function F(x)
e Draw the graph of F'(x)

e Determine E[X]

e Compute Var(X) and o(X)

)

e Determine P(| X |> 3)

e Determine P(X < —

[ 2

SUBRATA SAHA
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EXERCISE : For the random variable X with density function

0, r<-—1
flx) = c, —l<ax<l1
x> 1

e Determine the value of ¢

e Draw the graph of f(z)

e Determine the distribution function F(x)
e Draw the graph of F(z)

e Determine F|X]

and o(X)

e Compute Var(X

)
e Determine P(X < —

Mll—l

)
e Determine P(| X |> 3)

SUBRATA SAHA
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EXERCISE : For the random variable X with density function

flz) = 1(1-2%), —1<z<l
JT 0, otherwise

e Draw the graph of f(x)

e Verify that ff; flz)de =1

e Determine the distribution function F'(x)
e Draw the graph of F'(x)

e Determine F[X]

e Compute Var(X) and o(X)

e Determine P(X <0)

e Compute P(X > 2)

e Compute P(] X |> 2)

SUBRATA SAHA
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EXERCISE : Recall the density function

cx"(l—z"), 0<z<1

fulz) =

0, otherwise

considered earlier, where n is a positive integer, and where

(n+1)(2n+1)

n

- =

e Determine E[X] .
e What happens to E[X] for large n 7
e Determine FE[X?]
e What happens to E[X?| for largen ?

e What happens to Var(X) for largen 7

SUBRATA SAHA
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CONTINUOUS Covariance

RANDOM VARIABLES
Let X and Y be continuous random wvariables with mean
JOINT i .
DISTRIBUTIONS E [k] = HXx 3 E [H — My .
MARGINAL
DENSITY . i
Then the covariance of X and Y is
FUNCTIONS
INDEPENDENT Cov(X.Y) = E[(X —u Y —
INDEPENDENT (X.Y) [ (X = px) (Y = py) |
RANDOM
VARIABLES oo oo
= (z — px) (y — py) fxy(z,y) dy do .
CONDITIONAL oo S —o
DISTRIBUTIONS
EXPECTATION As in the discrete case, we have
VARIANCE (,» ot (}i }/) — E (}i — jix) (Y — ‘U.-}') ]
COVARIANCE ZIXY v X 4 ]
— — v — [l i Ay
MARKOV’S Hx Hy Fex iy
INEQUALITY
CHEBYSHEV'S = FE|XY| — EX] E|Y].
INEQUALITY
/. \
¢ )
\ M
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As in the discrete case, we also have

PROPERTY 1 :

e Var(X+Y) =
and

PROPERTY 2: If X and Y are independent then
e Cov(X,Y) =0,

e Var(X+Y) = Var(X) + Var(Y) .

NOTE :

e The proofs are identical to those for the discrete case !

e As in the discrete case, if Cov(X,Y) = 0 then X and
not necessarily independent!

SUBRATA SAHA

Var(X) + Var(Y) + 2 Cov(X,Y) ,

Y are
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CONTINUOUS EXAMPLE : For

RANDOM VARIABLES _ _
e ™Y forxr>0 and y >0,
JOINT fxy(z.y) =
DISTRIBUTIONS 0 otherwise

MARGINAL ) ] v f 1
DENSITY we already 10uIlc

FUNCTIONS

INDEPENDENT

CONTINUOUS
RANDOM so that

VARIABLES Ixv(z,y) = [fx(z) - fyv(y),

CONDITIONAL | . i _
DISTRBUTIONS ~ 7.€., X and Y are independent .

EXPECTATION

VARIANCE Indeed, we also already found

COVARIANCE

E[X] = E[Y] = E[XY] = 1,

MARKOV'S

INEQUALITY so that

CHEBYSHEV'S Cov(X,Y) = E|XY]| — EIX|EY] = 0.

INEQUALITY

1 N,

47 \‘L\QWEWM;‘/
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CONTINUOUS EXERCISE :
RANDOM VARIABLES

Verify the following properties :

JOINT
DISTRIBUTIONS

T - o 2 17 -
MARGINAL e Var(cX +d) c“ Var(X) ,
DENSITY
FUNCTIONS
e Cov(X,)Y) = Cov(Y,X),
INDEPENDENT ' ' '
CONTINUOUS
RANDOM

VARIABLES e Cov(eX,Y) = cCov(X,Y),

CONDITIONAL
DISTRIBUTIONS

e Cov(X,cY) = c¢Cov(X.)Y),

EXPECTATION

VARIANCE o Coo(X+Y.Z) = Cou(X,Z) + Cov(Y.Z),
COVARIANCE

NEouALTY o Var(X+Y) = Var(X) + Var(Y) + 2 Cou(X,Y) .

CHEBYSHEV’'S
INEQUALITY

47
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EXERCISE :

For the random variables X ., Y with joint density function

ry*(1—2)(1—y?), 0<z<1,0<y<1
flz,y) =

0, otherwise

e Verify that fn fn x,y) dyde=1.
e Determine the marginal density functions fx(z) and fy(y) .
e Are X and Y ndependent?

e What is the value of Cov(X,Y) 7
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CONTINUOUS
RANDOM VARIABLES

JOINT
DISTRIBUTIONS

MARGINAL

DENSITY

FUNCTIONS

INDEPENDENT

CONTINUOUS

RANDOM

VARIABLES

CONDITIONAL Ay

DISTRIBUTIONS ?ﬁﬁ‘iﬁﬁ;ﬁﬁﬁﬁﬂ%ﬁw
s

EXPECTATION X “‘ﬁﬁ&mﬁﬁ\\ !

il
VARIANCE "’"‘v’%‘ﬁ“ﬂ

@ COVARIANCE

MARKOV'S
INEQUALITY
CHEBYSHEV'S The joint probability density function fxv(x.y) .
INEQUALITY
4 N\
¢ Y

— N
UNIVERSITY OF ENGINEERING & NANAGEWENT

S U B RATA S AH A Good Education, Good Jobs



CONTINUOUS Markov’s inequality.
RANDOM VARIABLES

47

For a continuous nonnegative random variable X , and ¢ >0,

JOINT we have
DISTRIBUTIONS E[X]

MARGINAL c

DENSITY PROOF -
FUNCTIONS

INDEPENDENT E[X] = f rf(x) de =
0

00
) dr + f rf(x) dx
CONTINUOUS .
RANDOM

VARIABLES
rf xT
CONDITIONAL
c P

IV

DISTRIBUTIONS

( Why ? )

EXPECTATION

VARIANCE
(X >0).
COVARIANCE

MARKOV'S EXERCISE :
INEQUALITY

CHEBYSHEV’'S
INEQUALITY

Show Markov's inequality also holds for discrete random variables.
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Markov’s inequality : For continuous nonnegative X ,
ElX
P(X >¢) < X] .
c
EXAMPLE : For e~ forax >0,

c>0:

we have 0  otherwise
EX] = / re Tdr = 1 (already done ! )
0
Markov’s inequality gives
E 1
c=1 P(X >1) EL:—zl(!)
1 1
E[X] 1 _
»= 10 PIX>10) < — = — = 0.1
‘ (X=10) = =3 10
QUESTION : Are these estimates 7 sharp 7 7
(UEM)
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QUESTION : Are these estimates "sharp ” 7

Markov’s inequality gives

FE 1
c=1: P(X >1) E%:Izl(l)
E[ ] 1 _
=10 PIX>10) < — = — = 0.1
¢ | (X=210) < 10 10 !
The actual values are
P(X>1) = f e dr = e = 0.37
1
P(X >10) = f e dr = e ' = 0.000045
10

EXERCISE : Suppose the score of students taking an examination
is a random variable with mean 65 .

(Give an upper bound on the probability that a student’s score is
ereater than 75 .
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@ CHEBYSHEV'S

47

INEQUALITY

Chebyshev’s inequality: For (practically) any random variable X:
1

Pl | X —ul 12

> ko) <

where 1 = E[X] is the mean, o = \/Var(X) the standard deviation.

PROOF : Let Y =
By Markov’s inequality
P(Y >¢) <

(X — p)? , which is nonnegative.

ElY]

Taking ¢ = k?0? we have

P(|X—p| > ko) = P((X=p)?* > k%0*) = P(Y > k*0?)

ElY Var(X o2 1
< Y ] —( ) = = —. QED!
k202 k2o k202 k2
NOTE : This inequality also holds for discrete random variables.
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@ CHEBYSHEV'S

47

INEQUALITY

EXAMPLE : Suppose the value of the Canadian dollar in terms of
the US dollar over a certain period is a random variable X with
standard deviation o = 0.05 .

mean = 0.98 and

What can be said of the probability that the Canadian dollar is valued

between $0.88US and $1.08US
that is,
between

inw—20 and p+ 20 7

SOLUTION : By Chebyshev’s inequality we have

. ‘ 1 _
Pl | X—pu| >20) < 7 0.25 .
Thus
Pl | X—-pu| <20) > 1 —-025 = 0.75,
that is,
P($0.88US < Can$ < $1.08US) > 75 %.
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The score of students taking an examination is a random variable

with mean p = 65 and

standard deviation o =

=

Do

e What is the probability a student scores between 55 and 75 7

e How many students would have to take the examination so that
the probability that their average grade is between 60 and 70

is at least 80% 7
HINT : Defining

_ 1
X = E(}(l + X9 + + }{ﬂ,) )
T . f N x 1
we have Ly = E[}{] = =Nl
T

and, assuming independence,

- o2 o’ 25
Var(X) = n 5 = — =
n n n

SUBRATA SAHA
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and

=

Ix

65 |

( the average grade )
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THANK YOU
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