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Graphs



Application

• Airline Scheduling

• Search Engine Algorithms

• Social Media Marketing 

• Design Computer Chips
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Introduction to Graphs

Definition: A simple graph G = (V, E) consists of V, a 

nonempty set of vertices, and E, a set of unordered pairs

of distinct elements of V called edges.

For each eE, e = {u, v} where u, v  V.

An undirected graph (not simple) may contain loops. An 

edge e is a loop if e = {u, u} for some uV.
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Definition: A directed graph G = (V, E) consists of a set V 

of vertices and a set E of edges that are ordered pairs of 

elements in V.

For each eE, e = (u, v) where u, v  V.

An edge e is a loop if e = (u, u) for some uV.

A simple graph is just like a directed graph, but with no 

specified direction of its edges.

Broadcast and satellite TV / radio are one-way

connections from the broadcaster to your antenna.
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Graph Models
Example I: How can we represent a network of (bi-
directional) railways connecting a set of cities?

We should use a simple graph with an edge {a, b} 
indicating a direct train connection between cities a and b.

Delhi

Pune

Mumbai

Chennai
Kolkata

Goa

A graph of Facebook friends is a simple graph. It does not have multiple edges, since 

you’re either friends or you’re not. Also, you cannot be your own Facebook friend, so 

no loops
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Graph Terminology

Definition: Two vertices u and v in an undirected graph G 

are called adjacent (or neighbors) in G if {u, v} is an edge 

in G.

If e = {u, v}, the edge e is called incident with the vertices 

u and v. The edge e is also said to connect u and v.

The vertices u and v are called endpoints of the edge {u, 

v}.
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Graph Terminology

Definition: The degree of a vertex in an undirected graph is 

the number of edges incident with it, except that a loop at a 

vertex contributes twice to the degree of that vertex.

In other words, you can determine the degree of a vertex in 

a displayed graph by counting the lines that touch it.

The degree of the vertex v is denoted by deg(v).
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Graph Terminology

A vertex of degree 0 is called isolated, since it is not 

adjacent to any vertex. 

Note: A vertex with a loop at it has at least degree 2 and, by 

definition, is not isolated, even if it is not adjacent to any 

other vertex.

A vertex of degree 1 is called pendant. It is adjacent to 

exactly one other vertex.
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Graph Terminology

Example: Which vertices in the following graph are 

isolated, which are pendant, and what is the maximum 

degree? What type of graph is it?

a

b c

d
f h

g
jf

e

Solution: Vertex f is isolated, and vertices a, d and j are 

pendant. The maximum degree is deg(g) = 5. 

This graph is a pseudograph (undirected, loops).
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Graph Terminology

Let us look at the same graph again and determine the 

number of its edges and the sum of the degrees of all its 

vertices:

a

b c

d
f h

g
jf

e

Result: There are 9 edges, and the sum of all degrees is 18. 

This is easy to explain: Each new edge increases the sum of 

degrees by exactly two.
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Graph Terminology

The Handshaking Theorem: Let G = (V, E) 

be an undirected graph with e edges. Then

2e = vV deg(v)

Example: How many edges are there in a 

graph with 10 vertices, each of degree 6?

Solution: The sum of the degrees of the 

vertices is 610 = 60. According to the 

Handshaking Theorem, it follows that 2e = 60, 

so there are 30 edges.

Leonhard Euler
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Graph Terminology

Theorem: An undirected graph has an even number of 
vertices of odd degree. 

Proof: Let V1 and V2 be the set of vertices of even and 
odd degrees, respectively (Thus V1  V2 = , and V1 
V2 = V). 

Then by Handshaking theorem

2|E| = vV deg(v) = vV1 deg(v) + vV2 deg(v) 

Since both 2|E| and vV1 deg(v) are even, 

vV2 deg(v) must be even. 

Since deg(v) if odd for all vV2, |V2| must be even.
QED (https://en.wikipedia.org/wiki/Q.E.D.)
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Graph Terminology

Definition: When (u, v) is an edge of the graph G with 

directed edges, u is said to be adjacent to v, and v is said to 

be adjacent from u. 

The vertex u is called the initial vertex of (u, v), and v is 

called the terminal vertex of (u, v).

The initial vertex and terminal vertex of a loop are the 

same.

Goa

Chennai
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Graph Terminology

Definition: In a graph with directed edges, the in-degree of 

a vertex v, denoted by deg-(v), is the number of edges with 

v as their terminal vertex.

The out-degree of v, denoted by deg+(v), is the number of 

edges with v as their initial vertex.

Question: How does adding a loop to a vertex change the 

in-degree and out-degree of that vertex?

Answer: It increases both the in-degree and the out-degree 

by one.
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Graph Terminology

Example: What are the in-degrees and out-degrees of the 

vertices a, b, c, d in this graph:

a
b

cd

deg-(a) = 1

deg+(a) = 2

deg-(b) = 4

deg+(b) = 2

deg-(d) = 2

deg+(d) = 1

deg-(c) = 0

deg+(c) = 2
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Graph Terminology

Theorem: Let G = (V, E) be a graph with directed edges. 

Then:

vV deg-(v) = vV deg+(v) = |E|

This is easy to see, because every new edge  increases both 

the sum of in-degrees and the sum of out-degrees by one. 
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Special Graphs

Definition: The complete graph on n vertices, denoted by 

Kn, is the simple graph that contains exactly one edge 

between each pair of distinct vertices.

K1 K2 K3 K4 K5
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Special Graphs

Definition: The cycle Cn, n  3, consists of n vertices v1, v2, 

…, vn and edges {v1, v2}, {v2, v3}, …, {vn-1, vn}, {vn, v1}.

C3 C4 C5 C6
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Special Graphs

Definition: The n-cube, denoted by Qn, is the graph that 
has vertices representing the 2n bit strings of length n. Two 
vertices are adjacent if and only if the bit strings that they 
represent differ in exactly one bit position.

Q1 Q2 Q3

0 1

00 01

1110

000 001

101100

010 011

111110
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Special Graphs

Definition: A simple graph is called bipartite if its vertex 
set V can be partitioned into two disjoint nonempty sets V1

and V2 such that every edge in the graph connects a vertex 
in V1 with a vertex in V2 (so that no edge in G connects 
either two vertices in V1 or two vertices in V2).

For example, consider a graph that represents each person 
in a village by a vertex and each marriage by an edge.

This graph is bipartite because each edge connects a vertex 
in the subset of males with a vertex in the subset of 
females (if we think of traditional marriages)!!!!.
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Special Graphs

Example I: Is C3 bipartite?

v1

v2 v3

No, because there is no way to partition 

the vertices into two sets so that there are 

no edges with both endpoints in the same 

set.

Example II: Is C6 bipartite?

v5

v1

v2

v3 v4

v6
v1 v6

v2v5

v3
v4

Yes, because we 

can display C6

like this:
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Special Graphs

Definition: The complete bipartite graph Km,n is the 
graph that has its vertex set partitioned into two subsets of 
m and n vertices, respectively. Two vertices are connected if 
and only if they are in different subsets.

K3,2 K3,4
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Operations on Graphs

Definition: A subgraph of a graph G = (V, E) is a graph H 

= (W, F) where WV and FE.

Note: Of course, H is a valid graph, so we cannot remove 

any endpoints of remaining edges when creating H.

Example:

K5 subgraph of K5
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Operations on Graphs

Definition: The union of two simple graphs G1 = 

(V1, E1) and G2 = (V2, E2) is the simple graph with vertex 

set V1  V2 and edge set E1  E2. 

The union of G1 and G2 is denoted by G1  G2.

G1 G2 G1 G2 = K5
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Representing Graphs

a

b

c

d

a

b

c

d

a, db

a, dc

a, b, cd

b, c, da

Adjacent 

Vertices
Vertex

ab

c

a, b, cd

ca

Terminal 

Vertices

Initial 

Vertex
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Representing Graphs

Definition: Let G = (V, E) be a simple graph with |V| = n. 

Suppose that the vertices of G are listed in arbitrary order as 

v1, v2, …, vn. 

The adjacency matrix A (or AG) of G, with respect to this 

listing of the vertices, is the nn zero-one matrix with 1 as 

its (i, j)th entry when vi and vj are adjacent, and 0 otherwise.

In other words, for an adjacency matrix A = [aij], 

aij = 1 if {vi, vj} is an edge of G,

aij = 0 otherwise.

A symmetric matrix
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Representing Graphs

a

b

c

d

Example: What is the adjacency 

matrix AG for the following graph G 

based on the order of vertices a, b, c, 

d ?

Solution:





















0111

1001

1001

1110

GA

Note: Adjacency matrices of undirected graphs are always 

symmetric.
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Representing Graphs

Definition: Let G = (V, E) be an undirected graph with |V| 
= n. Suppose that the vertices and edges of G are listed in 
arbitrary order as v1, v2, …, vn and e1, e2, …, em, 
respectively. 

The incidence matrix of G with respect to this listing of the 
vertices and edges is the nm zero-one matrix with 1 as its 
(i, j)th entry when edge ej is incident with vi, and 0 
otherwise.

In other words, for an incidence matrix M = [mij], 

mij = 1 if edge ej is incident with vi

mij = 0 otherwise.
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Representing Graphs

Example: What is the incidence 

matrix M for the following graph G 

based on the order of vertices a, b, c, 

d and edges 1, 2, 3, 4, 5, 6?

Solution:





















001110

111000

000101

010011

M

Note: Incidence matrices of directed graphs contain two 1s 

per column for edges connecting two vertices and one 1 per 

column for loops.

a

b

c

d

1
2

4
53

6
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Isomorphism of Graphs

Definition: The simple graphs G1 = (V1, E1) and G2 = (V2, 

E2) are isomorphic if there is a bijection (an one-to-one and 

onto function) f from V1 to V2 with the property that a and b 

are adjacent in G1 if and only if f(a) and f(b) are adjacent in 

G2, for all a and b in V1.

Such a function f is called an isomorphism.

In other words, G1 and G2 are isomorphic if their vertices 

can be ordered in such a way that the adjacency matrices 

MG1
and MG2

are identical.
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Isomorphism of Graphs

From a visual standpoint, G1 and G2 are isomorphic if they 

can be arranged in such a way that their displays are 

identical (of course without changing adjacency).

Unfortunately, for two simple graphs, each with n vertices, 

there are n! possible isomorphisms that we have to check 

in order to show that these graphs are isomorphic.

However, showing that two graphs are not isomorphic can 

be easy.
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Isomorphism of Graphs

For this purpose we can check invariants, that is, properties 

that two isomorphic simple graphs must both have.

For example, they must have

• the same number of vertices,

• the same number of edges, and

• the same degrees of vertices.

Note that two graphs that differ in any of these invariants 

are not isomorphic, but two graphs that match in all of 

them are not necessarily isomorphic.
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Isomorphism of Graphs

Example I: Are the following two graphs isomorphic?

d

a

b

c

e

d

a

b
c

e

Solution: Yes, they are isomorphic, because they can be 

arranged to look identical. You can see this if in the right 

graph you move vertex b to the left of the edge {a, c}. Then 

the isomorphism f from the left to the right graph is: f(a) = 

e, f(b) = a, 

f(c) = b, f(d) = c, f(e) = d. 
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Isomorphism of Graphs

Example II: How about these two graphs?

d

a
b

c

e

d

a

b

c

e

Solution: No, they are not isomorphic, because they differ 

in the degrees of their vertices.

Vertex d in right graph is of degree one, but there is no such 

vertex in the left graph.



36

Connectivity

Definition: A path of length n from u to v, where n is a 

positive integer, in an undirected graph is a sequence of 

edges e1, e2, …, en of the graph such that e1 = {x0, x1}, e2 = 

{x1, x2}, …, en = {xn-1, xn}, where x0 = u and xn = v.

When the graph is simple, we denote this path by its vertex 

sequence x0, x1, …, xn, since it uniquely determines the 

path.

The path is a circuit if it begins and ends at the same 

vertex, that is, if u = v. 
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Connectivity

Definition (continued): The path or circuit is said to pass 

through or traverse x1, x2, …, xn-1. 

A path or circuit is simple if it does not contain the same 

edge more than once.
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Connectivity

Let us now look at something new:

Definition: An undirected graph is called connected if 

there is a path between every pair of distinct vertices in the 

graph.

For example, any two computers in a network can 

communicate if and only if the graph of this network is 

connected.

Note: A graph consisting of only one vertex is always 

connected, because it does not contain any pair of distinct 

vertices.
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Connectivity

Example: Are the following graphs connected?

d

a
b

c

e

Yes.

d

ab

c

e

No.

d

a
b

c

e

Yes.

d

ab

c

e

f
No.
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Connectivity

Example: What are the connected components in the 

following graph?

a

b c

d
f h

g
jf

e

Solution: The connected components are the graphs with 

vertices {a, b, c, d}, {e}, {f}, {f, g, h, j}.
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Shortest Path Problems

We can assign weights to the edges of graphs, for 

example to represent the distance between cities in a 

railway network:

Delhi

Kolkata

Mumbai

Pune

600

700

200

650
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Shortest Path Problems

Such weighted graphs can also be used to model computer 

networks with response times or costs as weights.

One of the most interesting questions that we can 

investigate with such graphs is:

What is the shortest path between two vertices in the 

graph, that is, the path with the minimal sum of weights

along the way?

This corresponds to the shortest train connection or the 

fastest connection in a computer network.
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Dijkstra’s Algorithm

Dijkstra’s algorithm is an iterative procedure that finds the 

shortest path between to vertices a and z in a weighted 

graph.

It proceeds by finding the length of the shortest path from a 

to successive vertices and adding these vertices to a 

distinguished set of vertices S. 

The algorithm terminates once it reaches the vertex z.
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The Traveling Salesman Problem

The traveling salesman problem is one of the classical 

problems in computer science.

A traveling salesman wants to visit a number of cities and 

then return to his starting point. Of course he wants to save 

time and energy, so he wants to determine the shortest path

for his trip.

We can represent the cities and the distances between them 

by a weighted, complete, undirected graph.

The problem then is to find the circuit of minimum total 

weight that visits each vertex exactly one.
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The Traveling Salesman Problem

Example: What path would the traveling salesman take to 

visit the following cities?

Kolkata

Delhi

Mumbai

Pune

600

700

200

650 550
700

Solution: The shortest path is 2,000 kms.
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The Traveling Salesman Problem

Question: Given n vertices, how many different cycles Cn

can we form by connecting these vertices with edges?

Solution: We first choose a starting point. Then we have (n 

– 1) choices for the second vertex in the cycle, (n – 2) for 

the third one, and so on, so there are (n – 1)! choices for the 

whole cycle.

However, this number includes identical cycles that were 

constructed in opposite directions. Therefore, the actual 

number of different cycles Cn is (n – 1)!/2.
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The Traveling Salesman Problem

Unfortunately, no algorithm solving the traveling salesman 

problem with polynomial worst-case time complexity has 

been devised yet.

This means that for large numbers of vertices, solving the 

traveling salesman problem is impractical.

In these cases, we can use efficient approximation 

algorithms that determine a path whose length may be 

slightly larger than the traveling salesman’s path, but 



Euler Paths

The Seven bridges of Königsberg

51

a

b

c

d
A

B

C

D



Properties
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An Euler path is a path using every edge of the graph G

exactly once.

An Euler circuit is an Euler path that returns to its start.

yes no no

(a, e, c, d, e, b, a)

Which of the following graphs has an Euler circuit? 

e

d

a

c

b

e

d

a

c

b

ec

a

d

b
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Hamilton Paths and Circuits

A Hamilton path in a graph G is a path which 

visits every vertex in G exactly once.

A Hamilton circuit is a Hamilton path that 

returns to its start.



Hamilton Circuits
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Dodecahedron puzzle  and it equivalent graph



Example
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• G1 has a Hamilton circuit: a, b, c, d, e, a

• G2 does not have a Hamilton circuit, but does have a 

Hamilton path: a, b, c, d

• G3 has neither.



Tree
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A tree T is
• A simple graph such 

that for every pair of 
vertices v and w

• there is a unique path 
from v to w



Terminology
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Parent

Ancestor

Child

Descendant

Siblings

Terminal vertices

Internal vertices

Subtrees



Subtrees
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A subtree of a tree T is a tree T' such 

that

V(T')  V(T) and

E(T')  E(T)



Properties of tree
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If T is a graph with n vertices, the following are 
equivalent:

a) T is a tree

b) T is connected and acyclic

 (“acyclic” = having no cycles)

c) T is connected and has n-1 edges

d) T is acyclic and has n-1 edges



Spanning trees
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Given a graph G, a tree T is 

a spanning tree of G if:

• T is a subgraph of G

and 

• T contains all the vertices 

of G



Prim’s algorithm
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Step 0: Pick any vertex as a starting 

vertex (call it a). T = {a}.

Step 1: Find the edge with smallest 

weight incident to a.  Add it to T  

Also include in T the next vertex 

and call it b.

Step 2: Find the edge of smallest 

weight incident to either a or b.  

Include in T that edge and the next 

incident vertex.  Call that vertex c.

Step 3: Repeat Step 2, 

choosing the edge of 

smallest weight that 

does not form a cycle 

until all vertices are in 

T. The resulting 

subgraph T is a 

minimum spanning tree.



Kruskal’s algorithm
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Step 1: Find the edge in the 
graph with smallest weight 
(if there is more than one, 
pick one at random). Mark it 
with any given color, say 
red.

Step 2: Find the next edge in 
the graph with smallest 
weight that doesn't close a 
cycle. Color that edge and 
the next incident vertex.

 Step 3: Repeat Step 2 until 

you reach out to every vertex of 

the graph. The chosen edges 

form the desired minimum 

spanning tree.



Binary trees
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A binary tree is a tree 

where each vertex has 

zero, one or two 

children



Coloring Graphs

64

• Definition: A graph has been colored if a color has been assigned to 

each vertex in such a way that adjacent vertices have different colors.

• Definition: The chromatic number of a graph is the smallest number 

of colors with which it can be colored.

In the example above, the chromatic number is 4.



Coloring Planar Graphs

65

• Definition: A graph is planar if it can be drawn in a plane without 
edge-crossings.

• The four color theorem: For every planar graph, the chromatic 
number is ≤ 4.

Was posed as a conjecture in the 1850s. Finally proved in 1976 
(Appel and Haken) by the aid of computers.



Example
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The chromatic number 

must be at least 3 since 

a, b, and c must be 

assigned different colors. 

So Let’s try 3 colors first.  

3 colors work, so the 

chromatic number of this 

graph is 3.

What is the chromatic number of the graph shown below?   



Game trees

Trees can be used to analyze all 

possible move sequences in a game:

Vertices are positions: 

– a square represents one player and a circle 

represents another player 

An edge represents a move 

A path represents a sequence of moves
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The End

PLEASE READ BOOKS


