
Group Theory

• Some of you facing difficulties in realizing a bit of new stuff, 

however, please TRY!!



Évariste Galois (1811-1832)

• Would-be revolutionary, 

expelled from school

• Studied math on his own

• Died in a pointless duel

• Wrote a letter that 

planted the seeds of 

group theory the night 

before his death
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Joseph-Louis Lagrange (1736-1813)

• Leading 
mathematician in 
Europe at the time

• Contributed to many 
areas of mathematics 
and physics

• Lived in Italy, 
Germany, and France

• Involved in creation of 
the metric system
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Divisibility and Divisors

• We say that m divides n (or n is divisible by m) if:

– m > 0

and:

– the ratio        is an integer.

• This property underlies all number theory, so we have a 

notation for it:

and we say that m is a divisor of n
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Prime Numbers

• Primes are important because they form the fundamental 

building blocks of all the positive integers:

– Any positive integer n can be written as a product of primes:

and this expansion is unique – there is only one way to write n as a 

product of primes in non-decreasing order.

• This is known as the Fundamental Theorem of Arithmetic
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Greatest Common Divisor (GCD)

• The greatest common divisor of two integers m and n is the largest 

integer that divides them both:

gcd(m, n) = max{k | k|m and k|n}

– Euclid's algorithm to calculate gcd(m,n), for given values

uses the recurrence:

• So, for example, gcd(12, 18) = gcd(6,12) = gcd(0,6) = 6

– Because any common divisor of m and n must also be a common 

divisor of both m and the number: 
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A binary operation on a set is a rule for combining two 
elements of the set. More precisely, if S is a non-empty set, a 
binary operation on S is a mapping f : S  S  S. Thus f 
associates with each ordered pair (x,y) of element of S an 
element f(x,y) of S. It is better notation to write x  * y for 
f(x,y), referring to as the binary operation.  

Binary operation



• Closure

• Identity

• Associativity

• Reciprocality

The operations in a group follow the 

requirements of a mathematical group.
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Groups

• A group, G, is a set of elements with an associated binary 

operation, .  It is sometimes denoted {G,   }

– For each ordered pair (a, b) of elements in G, there is an associated 

element (a b), such that the following axioms hold:
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Groups

• A finite group is a group with a finite number of elements, 

otherwise, a group is an infinite group.

• A group is said to be an abelian group if it satisfies the following 

condition:

–Examples of abelian groups:

• The set of integers (negative, zero, and positive), Z, under addition.  

The identity element of Z under addition is 0; 

the inverse of a is -a, for all a in Z.

• The set of non-zero real numbers, R*, under multiplication.  

The identity element of R* under multiplication is 1; 

the inverse of a is 1/a for all a in R*.

Ga, babba    allfor        : 5)  eCommutativ
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Exponentiation and Cyclic Groups

• Exponentiation within a group is repeated application of the group 
operator, such that:

• A group G is cyclic if every element of G is a power gk (k is an integer) 
of  a fixed element g G.  The element g is said to generate the group, 
or to be a generator of the group.

• A cyclic group is always abelian, and may be finite or infinite

– Example of a cyclic group:

• The group of positive integers, {N, +}, (N = {1, 2, 3, ...}) under addition is an 
infinite cyclic group generated by the element 1.  (i.e. 1 + 1 = 2, 1 + 1 + 1 = 3, 
etc.)
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Proposition. If a, b, and c are elements of a group G, then

(i) (a−1)−1 = a.

(ii) (ab)−1 = b−1a−1.

(iii) ab = ac or ba = ca implies that b = c. (cancellation law)



It often happens that some subset of a group will

also form a group under the same operation.Such

a group is called a subgroup. If (G,・) is a

group and H is a nonempty subset of G, then

(H,・) is called a subgroup of (G,・) if the

following conditions hold:

(i) a・ b ∈ H for all a, b ∈ H. (closure)

(ii) a−1 ∈ H for all a ∈ H. (existence of inverses)

Subgroups



Multiplicative group of nonzero remainders mod 7 – what makes it a 

group?

• Has binary group 
operation (multiplication)

• Has an identity element 
(product of x and 1 is x)

• Closed under 
multiplication, e.g. 
4 ◦ 3 = (4 x 3) mod 7 = 5

• Closed under inverse, 
e.g.
5–1 = 3 mod 7{1, 2, 3, 4, 5, 6}
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Lagrange’s Theorem

The order of any element in a finite group divides 

the order of the group.

Proof:

• The powers of an element of G form a subgroup 

of G.

• Since the order of an element is the order of the 

subgroup, and since the order of the subgroup 

must divide the order of the group, then the order 

of the element must divide the order of the group.
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• If G is a group and a  G, write

<a > = {an : n Z} = {all powers of a } .

It is easy to see that <a > is a subgroup of G .

< a > is called the cyclic subgroup of G generated by a. A

group G is called cyclic if there is some a  G with G = < a >;

in this case a is called a generator of G.

• Proposition: If G= <a > is a cyclic group of order n, then ak

is a generator of G if and only if gcd(k; n)= 1.

• Corollary: The number of generators of a cyclic group of

order n is (n).

Cyclic subgroup 



• Let (G, ·) be a group with subgroup H. For a, b ∈ G, we say

that a is congruent to b modulo H, and write a ≡ b mod H if

and only if ab−1 ∈ H.

Cosets

• Find the right cosets of A3 in S3.

Solution. One coset is the subgroup itself A3 = {(1), (123),

(132)}. Take any element not in the subgroup, say (12). Then

another coset is A3(12) = {(12), (123) (12), (132) (12)} =

{(12), (13), (23)}.Since the right cosets form a partition of S3

and the two cosets above contain all the elements of S3, it

follows that these are the only two cosets.

In fact, A3 = A3(123) = A3(132) and A3(12) = A3(13) = A3(23).



Normal subgroups
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Definition: A subgroup H of a group G is called a normal

subgroup of G if g−1hg ∈ H for all g ∈ G and h ∈ H.

Proposition 2.3.1. Hg = gH, for all g ∈ G, if and only if H is a

normal subgroup of G.

Proof. Suppose that Hg = gH. Then, for any element h ∈ H, hg ∈
Hg = gH. Hence hg = gh1 for some h1 ∈ H and g−1hg = g−1gh1

= h1 ∈ H. Therefore, H is a normal subgroup.

Conversely, if H is normal, let hg ∈ Hg and g−1hg = h1 ∈ H.

Then hg = gh1 ∈ gH and Hg ⊆ gH. Also, ghg−1 = (g−1)−1hg−1 =

h2∈ H, since H is normal, so gh = h2g ∈ Hg. Hence, gH ⊆ Hg,

and so Hg = gH.
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Rings

• A ring, R, denoted by {R, +, }, is a set of elements with two binary operations, 

called addition (+) and multiplication (   ), such that, for a, b, c in R:

1)-5) R is an abelian group with respect to addition; for this case of an additive group, 

we denote the identity element as 0, and the inverse of a as -a.

6) Closure under multiplication:

If a and b belong to R, then a b is also in R

7) Associativity of multiplication:

a (b c) = (a b)    c for all a, b, c, in R

8) Distributive Laws:

a (b + c) = a b + a c for all a, b, c, in R

(a + b)    c = a c + b c for all a, b, c, in R

Note that we often write 

a b as simply ab

addition and multiplication are abstract operations here








  

  
  


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Commutative Rings

• A ring is commutative if it satisfies the following additional condition:

9) Commutativity of multiplication: 

a     b = b    a  for all a, b, c, in R

Example of a commutative ring:

The set of even integers, {..., -4, -2, 0, 2, 4, ...}) under the normally 

defined integer operations of addition and multiplication.


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Integral Domains

• An integral domain is a commutative ring that obeys the following:

10) Multiplicative identity:

There is an element 1 in R such that a 1 = 1 a = a for all a in R

11) No zero divisors:

If a, b in R and a b = 0, then either a = 0 or b = 0

Example of an integral domain:

The set of all integers (Z = {..., -3, -2, -1, 0, 1, 2, 3, ...}) under the normally 

defined integer operations of addition and multiplication, {Z, +, }

 


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Fields

• A field, F, denoted by {F, +,   }, is a set of elements with two binary 

operations, called addition and multiplication, such that, for all a, b, c in 

F, the following apply:

1)-11) F is an integral domain

11) Multiplicative inverse:

For each a in F, except 0, there is an element a-1 in F such that:

a a-1 = a-1 a = 1

Again, addition and multiplication are abstract operations








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Fields

• A field is a set in which we can do addition, subtraction, multiplication, 

and division without leaving the set.

• Division is defined:

a/b = a(b-1)

Examples:

• The set of rational numbers, Q;  the set of real numbers, R, the set of 

complex numbers, C.

• The set of all integers, Z, is not a field, because only the elements 1 and 

-1 have multiplicative inverses in the integers.



25

Groups, Rings, and Fields

Groups

Abelian Groups

Rings

Commutative Rings

Integer Domains

Fields




