Group Theory

* Some of you facing difficulties in realizing a bit of new stuff,
however, please TRY!!



Evariste Galois (1811-1832)

* Would-be revolutionary,
expelled from school

« Studied math on his own
* Died in a pointless duel

* Wrote a letter that
planted the seeds of
group theory the night
before his death




Joseph-Louis Lagrange (1736-1813)

* Leading
mathematician in
Europe at the time

« Contributed to many
areas of mathematics
and physics

« Lived in Italy,
Germany, and France

 Involved in creation of
the metric system




Divisibility and Divisors

* We say that m divides » (or n is divisible by m) if:

—m>0

and:

— the ratio — 1s an integer.
m

 This property underlies all number theory, so we have a
notation for it:

m|n

and we say that m 1s a divisor of n



Prime Numbers

e Primes are important because they form the fundamental
building blocks of all the positive integers:

— Any positive integer n can be written as a product of primes:
n=p-p,--..p,=|lpn (<p,<<p,)
=1
and this expansion is unique — there is only one way to write n as a

product of primes in non-decreasing order.

 This 1s known as the Fundamental Theorem of Arithmetic



Greatest Common Divisor (GCD)

* The greatest common divisor of two integers m and n 1s the largest
integer that divides them both:

gcd(m, n) = max{k | k|m and k|n}
— Euclid's algorithm to calculate gcd(m,n), for given values 0 <m <n
uses the recurrence:
gcd(0,n) =mn;
gcd(m,n) = gcd(nmod m, m), form >0
* So, for example, gcd(12, 18) = gcd(6,12) = gcd(0,6) =6

— Because any common divisor of m and » must also be a common
divisor of both m and the number:

nmodm = n—|n/m|m

where| a | is the floor function, the smallest integer less than or equal to a



Binary operation

A binary operation on a set is a rule for combining two
elements of the set. More precisely, if S is a non-empty set, a
binary operation on Sisa mappingf:SxS—S. Thusf
associates with each ordered pair (x,y) of element of S an
element f(x,y) of S. It is better notation to write x_* y for
f(x,y), referring to as the binary operation.




The operations in a group follow the
requirements of a mathematical group.

* Closure
* Identity
» Associativity
* Reciprocality



Groups

* A group, G, 1s a set of elements with an associated binary
operation,® . It 1s sometimes denoted {G, e }

— For each ordered pair (a, b) of elements in G, there 1s an associated
clement (a @ b), such that the following axioms hold:

1) Closure :
2) Associative :

3) Identity element

4) Inverse element :

Ifaandbe G, thenaebe G
ae(bec)=(aeb)ectoralla, b, ceG

There is an element e € G such that
aee=coq=q forallaeG

For eacha € G thereis an elementa’ € G such that

aea'=aq'ea=e¢



Groups

* A finite group 1s a group with a finite number of elements,
otherwise, a group 1s an infinite group.

A group is said to be an abelian group if 1t satisfies the following
condition:

5) Commutative: aeb=>beqaforalla beG

—Examples of abelian groups:

» The set of integers (negative, zero, and positive), Z, under addition.
The 1dentity element of Z under addition is O;
the inverse of a is -a, for all a in Z.

* The set of non-zero real numbers, R*, under multiplication.
The 1dentity element of R* under multiplication is 1;
the inverse of a is 1/a for all a in R*.
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Example

Let me describe the addition and multiplication on Z, by tables:

Product Table

JO[1[2]

Addition Table
+[[0]1]2]3
offo]1]2]3
11(1[2[3|0
210213/0|1
313[0]1]2

ol b2 =) <
ool o
W b3 = <
| 2 B2l ©
=] el el S| el

Let me do the same for Zs:

Product Table

- JO[1[2]3]

= el ol =l S| =l

sl ol B =] ©
ool ool o
sl ol b =] ©
ol =l il b ©
LI =l =] o) ©

Addition Table
- JOJ1[2[3]4
Ofo]1|12(3]4
11121340
21213401
334012
4104(0]1]2(3
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Exponentiation and Cyclic Groups

» Exponentiation within a group is repeated application of the group
operator, such that:

a’ =e, theidentity element
a"=aeae---eq (ie.eapplied n-1times)

a” =(a")", wherea'is theinverse of a

« A group G is cpclic if every element of G is a power g% (k is an integer)
of a fixed element g € G. The element g 1s said to generate the group,
or to be a generator of the group.

* A cyclic group 1s always abelian, and may be finite or infinite
— Example of a cyclic group:

» The group of positive integers, {N, +}, (N= {1, 2, 3, ...}) under addition is an
infinite cyclic group generated by the element 1. (i.e. 1 +1=2,1+1+1=3,
etc.)
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Proposition. If a, b, and c are elements of a group G, then
(i) (@)1 =a.
(i) (ab)~ ! = b la~".

(i11) ab = ac or ba = ca implies that b = c. (cancellation law)



Subgroups

It often happens that some subset of a group will
also form a group under the same operation.Such
a group 1s called a subgroup. If (G, = )1sa
group and H 1s a nonempty subset of G, then

(H, =) 1scalled a subgroup of (G, =) if the
following conditions hold:

(1)a = b€ H forall a, b € H. (closure)

(i1) a ! € H for all a € H. (existence of inverses)



Multiplicative group of nonzero remainders mod 7 — what makes it a

group?
x 1 2 3 4 5 6
1 |1 (2|3 |4|5]6
2 214|161 |3]5
3 13|62 |5|1]4
4 1415|2613
55|31 ]6|4]2
6 |6 |54 ]|3|2]1

{1, 2, 3,4, 5, 6}

AN W N U1 A

Has binary group
operation (multiplication)
Has an identity element
(product of x and 1 is x)
Closed under
multiplication, e.g.
43=(4x3)mod7 =5
Closed under inverse,

e.g.
51'=3 mod 7



Lagrange’'s Theorem

The order of any element in a finite group divides
the order of the group.

Proof:

* The powers of an element of G form a subgroup
of G.

« Since the order of an element is the order of the
subgroup, and since the order of the subgroup
must divide the order of the group, then the order
of the element must divide the order of the group.



Cyclic subgroup

 If Gisagroupanda € G, write
<a>={a":ne Z} = {all powersof a } .
It 1s easy to see that <a > 1s a subgroup of G .

< a > 1s called the cyclic subgroup of G generated by a. A
group G 1s called cyclic if there 1s some a € G with G =< a >;
in this case a 1s called a generator of G.

* Proposition: If G= <a > is a cyclic group of order n, then a*
is a generator of G if and only if gcd(k; n)= 1.

* Corollary: The number of generators of a cyclic group of
order n is ¢(n).



Cosets

* Let (G, ) be a group with subgroup H. For a, b € G, we say
that a 1s congruent to b modulo H, and write a = b mod H 1f
and only if ab™! € H.

* Find the right cosets of A;in §,.

Solution. One coset 1s the subgroup itselt A; = {(1), (123),

(132)}. Take any element not in the subgroup, say (12). Then
another coset 1s 4;(12) = {(12), (123) (12), (132) (12)} =
{(12), (13), (23)}.Since the right cosets form a partition of S,
and the two cosets above contain all the elements of §;, it
follows that these are the only two cosets.

In fact, A, = A;(123) = A;(132) and A;(12) = A;(13) = 4,(23).



Normal subgroups

Definition: A subgroup H of a group G i1s called a normal
subgroup of G if g'hg € H forall g € G and h € H.

Proposition 2.3.1. Hg = gH, for all g € G, if and only if H is a
normal subgroup of G.

Proof. Suppose that Hg = gH. Then, for any element h € H, hg €

Hg = gH. Hence hg = gh, for some h, € H and g 'hg = g"!gh,
= h, € H. Therefore, H 1s a normal subgroup.
Conversely, if H is normal, let hg € Hg and g''hg = h, € H.
Then hg = gh, € gH and Hg € gH. Also, ghg! = (g ') 'hg™'=
h, € H, since H 1s normal, so gh = h,g € Hg. Hence, gH € Hg,
and so Hg = gH.
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Rings

» Aring, R, denoted by {R, +, X }, is a set of elements with two binary operations,
called addition (+) and multiplication ( X), such that, for a, b, ¢ in R:

addition and multiplication arc [BSI@8 operations here

1)-5) R is an abelian group with respect to addition; for this case of an additive group,

6)

7

8)

we denote the identity element as 0, and the inverse of a as -a.

Closure under multiplication:

If a and b belong to R, then a Xb is also in R

Associativity of multiplication: Note that we often write

a xb as simply ab

ax(bxc)=(axb)xcftoralla,b,c,inR
Distributive Laws:

aX((b+c)=axb+axc foralla, b, c,inR

(a+b)xc=axc+bxXc foralla, b, c,inR
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Commutative Rings

* Aring 1s commutative 1if it satisfies the following additional condition:

9) Commutativity of multiplication:
axXxb=bxa foralla, b,c, inR

Example of a commutative ring:

The set of even integers, {..., -4, -2, 0, 2, 4, ...}) under the normally
defined integer operations of addition and multiplication.
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Integral Domains

* An integral domain 1s a commutative ring that obeys the following:

10) Multiplicative identity:
There 1s an element 1 in R such thata x1 =1 Xa=a forall a in R

11) No zero divisors:
Ifa,bin Rand a Xb =0, then eithera=00rb5=0

Example of an integral domain:

The set of all integers (Z = {...,-3,-2,-1,0, 1, 2, 3, ...}) under the normally
defined integer operations of addition and multiplication, {Z, +, X}
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Fields

» Afield, F, denoted by {F, +, X}, 1s a set of elements with two binary
operations, called addition and multiplication, such that, for all a, b, ¢ in
F, the following apply:

Again, addition and multiplication are abstract operations

1)-11) F is an integral domain

11)  Multiplicative inverse:

For each a in F, except 0, there is an element a”/ in F such that:

1

axal=alxa=1
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Fields

A field 1s a set in which we can do addition, subtraction, multiplication,
and division without leaving the set.

 Division is defined:

a/b=a(b")

Examples:

» The set of rational numbers, Q; the set of real numbers, R, the set of
complex numbers, C.

» The set of all integers, Z, 1s not a field, because only the elements 1 and
-1 have multiplicative inverses in the integers.
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Groups, Rings, and Fields

Groups

Abelian Groups

Rings

Commutative Rings

Integer Domains
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