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Set Theory

Actually, you will see that logic and 
set theory are very closely related.
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Set Theory

• Set: Collection of objects (called elements)

• aA “a is an element of A”
“a is a member of A”

• aA “a is not an element of A”

• A = {a1, a2, …, an}   “A contains a1, …, an”

• Order of elements is insignificant

• It does not matter how often the same 
element is listed (repetition doesn’t count).
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Set Equality

Sets A and B are equal if and only if they 
contain exactly the same elements.

Examples:

• A = {9, 2, 7, -3}, B = {7, 9, -3, 2} : A = B

• A = {dog, cat, horse}, 
B = {cat, horse, squirrel, dog} : A  B

• A = {dog, cat, horse}, 
B = {cat, horse, dog, dog} : A = B
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Examples for Sets

“Standard” Sets:

• Natural numbers N = {0, 1, 2, 3, …}

• Integers Z = {…, -2, -1, 0, 1, 2, …} 

• Positive Integers Z+ = {1, 2, 3, 4, …}

• Real Numbers R = {47.3, -12, , …}

• Rational Numbers Q = {1.5, 2.6, -3.8, 15, …}

(correct definitions will follow)
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Examples for Sets

• A =  “empty set/null set”

• A = {z} Note: zA, but z  {z}

• A = {{b, c}, {c, x, d}} set of sets

• A = {{x, y}}      Note: {x, y} A, but {x, y}  {{x, y}}

• A = {x | P(x)}   “set of all x such that P(x)”

P(x) is the membership function of set A

x (P(x)  xA)

• A = {x | x N  x > 7} = {8, 9, 10, …}
“set builder notation”
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Examples for Sets

We are now able to define the set of rational 
numbers Q:

Q = {a/b | aZ  bZ+}, or  

Q = {a/b | aZ  bZ  b0} 

And how about the set of real numbers R?

R = {r | r is a real number}

That is the best we can do. It can neither be 

defined by enumeration nor builder function.
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Subsets
A  B “A is a subset of B”
A  B if and only if every element of A is also  

an element of B.
We can completely formalize this:
A  B  x (xA xB)

Examples:

A = {3, 9}, B = {5, 9, 1, 3},           A  B ? true

A = {3, 3, 3, 9}, B = {5, 9, 1, 3},   A  B ?

false

true

A = {1, 2, 3}, B = {2, 3, 4},           A  B ?
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Subsets
Useful rules:

• A = B  (A  B)  (B A) 

• (A  B) (B  C)  A  C   (see Venn Diagram)

U

A
B

C
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Subsets

Useful rules:
•   A for any set A 

(but   A may not hold for any set A)
• A  A for any set A

Proper subsets:
A  B     “A is a proper subset of B”
A  B  x (xA  xB)  x (xB  xA)
or
A  B  x (xA  xB)  x (xB xA) 
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Cardinality of Sets

If a set S contains n distinct elements, nN,
we call S a finite set with cardinality n.

Examples:

A = {Mercedes, BMW, Porsche},   |A| = 3

B = {1, {2, 3}, {4, 5}, 6} |B| = 4

C =  |C| = 0

D = { xN | x  7000 } |D| = 7001

E = { xN | x  7000 } E is infinite!
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The Power Set

P(A)           “power set of A” (also written as 2A)

P(A) = {B | B  A}     (contains all subsets of A)

Examples:

A = {x, y, z}

P(A) = {, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}

A = 

P(A) = {}

Note: |A| = 0,  |P(A)| = 1
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The Power Set
Cardinality of power sets: | P(A) | = 2|A|

• Imagine each element in A has an “on/off” switch

• Each possible switch configuration in A 
corresponds to one subset of A, thus one element 
in P(A)

zzzzzzzzz

yyyyyyyyy

xxxxxxxxx

87654321A

• For 3 elements in A, there are 
222 = 8 elements in P(A)
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Cartesian Product
The ordered n-tuple (a1, a2, a3, …, an) is an 
ordered collection of n objects.

Two ordered n-tuples (a1, a2, a3, …, an) and 
(b1, b2, b3, …, bn) are equal if and only if they 
contain exactly the same elements in the same 
order, i.e. ai = bi for 1  i  n.

The Cartesian product of two sets is defined as:

AB = {(a, b) | aA  bB}
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Cartesian Product

Example:

A = {good, bad}, B = {student, prof}

AB = {
(good, student), (good, prof), (bad, student), (bad, prof)}

(prof, bad)}(student, good), (prof, good), (student, bad),BA = {

Example: A = {x, y}, B = {a, b, c}
AB = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)}
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Cartesian Product

Note that:

• A = 

• A = 

• For non-empty sets A and B: AB  AB  BA

• |AB| = |A||B|

The Cartesian product of two or more sets is 
defined as:

A1A2…An = {(a1, a2, …, an) | aiAi for 1  i  n}
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Set Operations

Union: AB = {x | xA  xB}

Example: A = {a, b}, B = {b, c, d}
AB = {a, b, c, d} 

Intersection: AB = {x | xA  xB}

Example: A = {a, b}, B = {b, c, d}
AB = {b}

Cardinality: |AB| = |A| + |B| - |AB|
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Set Operations

Two sets are called disjoint if their intersection 
is empty, that is, they share no elements:
AB = 

The difference between two sets A and B 
contains exactly those elements of A that are 
not in B:
A-B = {x | xA  xB}
Example: A = {a, b}, B = {b, c, d}, A-B = {a}

Cardinality: |A-B| = |A| - |AB|
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Set Operations

The complement of a set A contains exactly 
those elements under consideration that are not 
in A: denoted Ac (or     as in the text)
Ac = U-A

Example: U = N,  B = {250, 251, 252, …}
Bc = {0, 1, 2, …, 248, 249}

A
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Logical Equivalence

Equivalence laws
– Identity laws, P  T  P,

– Domination laws, P  F  F,

– Idempotent laws, P  P  P,

– Double negation law,  ( P)  P

– Commutative laws, P  Q  Q  P,

– Associative laws, P  (Q  R) (P  Q)  R,

– Distributive laws, P  (Q  R) (P  Q)  (P  R),

– De Morgan’s laws,  (PQ)  ( P)  ( Q)

– Law with implication P  Q   P  Q
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Set Identity
Table 1 in Section 1.7 shows many useful equations 

– Identity laws, A = A, AU = A

– Domination laws, AU = U, A = 

– Idempotent laws, AA = A, AA = A

– Complementation law, (Ac)c =  A

– Commutative laws, AB = BA, AB = BA
– Associative laws, A(B  C) = (AB)C, …

– Distributive laws, A(BC) = (AB)(AC), …

– De Morgan’s laws, (AB)c = AcBc, (AB)c = AcBc

– Absorption laws, A(AB) = A, A(AB) = A

– Complement laws, AAc = U, AAc = 
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Set Identity

How can we prove A(BC) = (AB)(AC)?

Method I: logical equivalent

xA(BC)

 xA  x(BC)
 xA  (xB  xC)
 (xA  xB)  (xA  xC) (distributive law)
 x(AB)  x(AC)
 x(AB)(AC)

Every logical expression can be transformed into an 
equivalent expression in set theory and vice versa.
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Set Operations
Method II: Membership table

1 means “x is an element of this set”
0 means “x is not an element of this set” 

111111   1   1

111101   1   0

111101   0   1

111101   0   0

111110   1   1

001000   1   0

010000   0   1

000000   0   0

(AB) (AC)ACABA(BC)BCA   B   C
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… and the following mathematical 
appetizer is about…

Functions
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Functions

A function f from a set A to a set B is an 
assignment of exactly one element of B to each
element of A.

We write

f(a) = b

if b is the unique element of B assigned by the 
function f to the element a of A.

If f is a function from A to B, we write

f: AB

(note:  Here, ““ has nothing to do with if… then)
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Functions

If f:AB, we say that A is the domain of f and B 
is the codomain of f. 

If f(a) = b, we say that b is the image of a and a is 
the pre-image of b.

The range of f:AB is the set of all images of all
elements of A.

We say that f:AB maps A to B.
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Functions

Let us take a look at the function f:PC with
P = {Linda, Max, Kathy, Peter}
C = {Boston, New York, Hong Kong, Moscow}

f(Linda) = Moscow
f(Max) = Boston
f(Kathy) = Hong Kong
f(Peter) = New York

Here, the range of f is C.
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Functions

Let us re-specify f as follows:

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Boston

Is f still a function? yes

{Moscow, Boston, Hong Kong}What is its range?
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Functions

Other ways to represent f:

BostonPeter

Hong 
Kong

Kathy

BostonMax

MoscowLinda

f(x)x Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow
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Functions

If the domain of our function f is large, it is 
convenient to specify f with a formula, e.g.:

f:RR
f(x) = 2x

This leads to:
f(1) = 2
f(3) = 6
f(-3) = -6
…
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Functions

Let f1 and f2 be functions from A to R.

Then the sum and the product of f1 and f2 are 
also functions from A to R defined by:

(f1 + f2)(x) =  f1(x) + f2(x)

(f1f2)(x) =  f1(x) f2(x)

Example:

f1(x) = 3x,  f2(x) = x + 5

(f1 + f2)(x) =  f1(x) + f2(x) = 3x + x + 5 = 4x + 5

(f1f2)(x) =  f1(x) f2(x) = 3x (x + 5) = 3x2 + 15x
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Functions

We already know that the range of a function 
f:AB is the set of all images of elements aA.

If we only regard a subset SA, the set of all 
images of elements sS is called the image of S.

We denote the image of S by f(S):

f(S) = {f(s) | sS}
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Functions

Let us look at the following well-known function:

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Boston

What is the image of S = {Linda, Max} ?

f(S) = {Moscow, Boston}

What is the image of S = {Max, Peter} ?

f(S) = {Boston}
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Properties of Functions

A function f:AB is said to be one-to-one (or 
injective), if and only if

x, yA (f(x) = f(y)  x = y)

In other words: f is one-to-one if and only if it 
does not map two distinct elements of A onto the 
same element of B.
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Properties of Functions

And again…

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Boston

Is f one-to-one?

No, Max and Peter are 
mapped onto the same 
element of the image.

g(Linda) = Moscow

g(Max) = Boston

g(Kathy) = Hong Kong

g(Peter) = New York

Is g one-to-one?

Yes, each element is 
assigned a unique 
element of the image.
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Properties of Functions

How can we prove that a function f is one-to-one?

Whenever you want to prove something, first 
take a look at the relevant definition(s):

x, yA (f(x) = f(y)  x = y)

Example:

f:RR

f(x) = x2

Disproof by counterexample:

f(3) = f(-3), but 3  -3, so f is not one-to-one.
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Properties of Functions

… and yet another example:

f:RR

f(x) = 3x

One-to-one: x, yA (f(x) = f(y)  x = y)

To show: f(x)  f(y) whenever x  y (indirect proof)

x  y

 3x  3y

 f(x)  f(y), 

so if x  y, then f(x)  f(y), that is, f is one-to-one.
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Properties of Functions

A function f:AB with A,B  R is called strictly 
increasing, if 

x,yA (x < y  f(x) < f(y)),

and strictly decreasing, if

x,yA (x < y  f(x) > f(y)).

Obviously, a function that is either strictly 
increasing or strictly decreasing is one-to-one.
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Properties of Functions

A function f:AB is called onto, or surjective, if 
and only if for every element bB there is an 
element aA with f(a) = b.

In other words, f is onto if and only if its range is 
its entire codomain.

A function f: AB is a one-to-one correspondence, 
or a bijection, if and only if it is both one-to-one 
and onto.

Obviously, if f is a bijection and A and B are finite 
sets, then |A| = |B|.
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Properties of Functions

Examples:

In the following examples, we use the arrow 
representation to illustrate functions f:AB. 

In each example, the complete sets A and B are 
shown.
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Properties of Functions

Is f injective?

No.

Is f surjective?

No.

Is f bijective?

No.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow
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Properties of Functions

Is f injective?

No.

Is f surjective?

Yes.

Is f bijective?

No.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

Paul
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Properties of Functions

Is f injective?

Yes.

Is f surjective?

No.

Is f bijective?

No.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

Lübeck
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Properties of Functions

Is f injective?

No! f is not even
a function!

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

Lübeck
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Properties of Functions

Is f injective?

Yes.

Is f surjective?

Yes.

Is f bijective?

Yes.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

LübeckHelena
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Inversion

An interesting property of bijections is that 
they have an inverse function.

The inverse function of the bijection f:AB 
is the function f-1:BA with 

f-1(b) = a whenever f(a) = b. 
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Inversion

Example:

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Lübeck

f(Helena) = New York

Clearly, f is bijective.

The inverse function  
f-1 is given by:

f-1(Moscow) = Linda

f-1(Boston) = Max

f-1(Hong Kong) = Kathy

f-1(Lübeck) = Peter

f-1(New York) = Helena

Inversion is only 
possible for bijections
(= invertible functions)
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Composition

The composition of two functions g:AB and  
f:BC, denoted by  fg, is defined by 

(fg)(a) = f(g(a))

This means that 
• first, function g is applied to element aA,

mapping it onto an element of B,
• then, function f is applied to this element of 

B, mapping it onto an element of C.
• Therefore, the composite function maps 

from A to C.
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Composition

Example:

f(x) = 7x – 4, g(x) = 3x,

f:RR, g:RR

(fg)(5) = f(g(5)) = f(15) = 105 – 4 = 101

(fg)(x) = f(g(x)) = f(3x) = 21x - 4
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Composition

Composition of a function and its inverse:

(f-1f)(x) = f-1(f(x)) = x

The composition of a function and its inverse 
is the identity function i(x) = x.
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Graphs

The graph of a function f:AB is the set of 
ordered pairs {(a, b) | aA and f(a) = b}.

The graph is a subset of AB that can be used 
to visualize f in a two-dimensional coordinate 
system.
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You Never Escape Your…

Relations
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Relations
If we want to describe a relationship between 
elements of two sets A and B, we can use ordered 
pairs with their first element taken from A and  
their second element taken from B. 

Since this is a relation between two sets, it is 
called a binary relation.

Definition: Let A and B be sets. A binary relation 
from A to B is a subset of AB.

In other words, for a binary relation R we have 
R  AB. We use the notation aRb to denote that 
(a, b)R and aRb to denote that (a, b)R.



53

Relations
When (a, b) belongs to R, a is said to be related to 
b by R.
Example: Let P be a set of people, C be a set of 
cars, and D be the relation describing which person 
drives which car(s).
P = {Carl, Suzanne, Peter, Carla}, 
C = {Mercedes, BMW, tricycle}
D = {(Carl, Mercedes), (Suzanne, Mercedes),

(Suzanne, BMW), (Peter, tricycle)}
This means that Carl drives a Mercedes, Suzanne 
drives a Mercedes and a BMW, Peter drives a 
tricycle, and Carla does not drive any of these 
vehicles.
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Functions as Relations

You might remember that a function f from a set A 
to a set B assigns a unique element of B to each 
element of A.

The graph of f is the set of ordered pairs (a, b) 
such that b = f(a).

Since the graph of f is a subset of AB, it is a 
relation from A to B.

Moreover, for each element a of A, there is 
exactly one ordered pair in the graph that has a as 
its first element.
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Functions as Relations

Conversely, if R is a relation from A to B such that 
every element in A is the first element of exactly 
one ordered pair of R, then a function can be 
defined with R as its graph.

This is done by assigning to an element aA the 
unique element bB such that (a, b)R.
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Relations on a Set

Definition: A relation on the set A is a relation 
from A to A.

In other words, a relation on the set A is a subset 
of AA.

Example: Let A = {1, 2, 3, 4}. Which ordered pairs 
are in the relation R = {(a, b) | a < b} ?
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Relations on a Set

Solution: R = {(1, 2), (1, 3), (1, 4), (2, 3),(2, 4),(3, 4)}

4

3

2

1

4321R1 1

2

3

4

2

3

4

X X X

X X

X
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Relations on a Set
How many different relations can we define on 
a set A with n elements?

A relation on a set A is a subset of AA.
How many elements are in AA ?

There are n2 elements in AA, so how many 
subsets (= relations on A) does AA have?

The number of subsets that we can form out of a 
set with m elements is 2m. Therefore, 2n2 subsets 
can be formed out of AA.

Answer: We can define 2n2 different relations 
on A.
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Properties of Relations
We will now look at some useful ways to classify 
relations.

Definition: A relation R on a set A is called 
reflexive if (a, a)R for every element aA.

Are the following relations on {1, 2, 3, 4} reflexive?

R = {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)} No.

R = {(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)} Yes.

R = {(1, 1), (2, 2), (3, 3)} No.

Definition: A relation on a set A is called 
irreflexive if (a, a)R for every element aA.
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Properties of Relations

Definitions:

A relation R on a set A is called symmetric if (b, 
a)R whenever (a, b)R for all a, bA. 

A relation R on a set A is called antisymmetric if 
a = b whenever (a, b)R and (b, a)R.

A relation R on a set A is called asymmetric if 
(a, b)R implies that (b, a)R for all a, bA. 
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Properties of Relations

Are the following relations on {1, 2, 3, 4} 
symmetric, antisymmetric, or asymmetric?

R = {(1, 1), (1, 2), (2, 1), (3, 3), (4, 4)} symmetric

R = {(1, 1)} sym. and 
antisym.

R = {(1, 3), (3, 2), (2, 1)} antisym. 
and asym.

R = {(4, 4), (3, 3), (1, 4)} antisym.



62

Properties of Relations

Definition: A relation R on a set A is called 
transitive if whenever (a, b)R and (b, c)R, then 
(a, c)R for a, b, cA. 

Are the following relations on {1, 2, 3, 4} 
transitive?

R = {(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)} Yes.

R = {(1, 3), (3, 2), (2, 1)} No.

R = {(2, 4), (4, 3), (2, 3), (4, 1)} No.
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Counting Relations
Example: How many different reflexive relations 
can be defined on a set A containing n elements?

Solution: Relations on R are subsets of AA, which 
contains n2 elements.
Therefore, different relations on A can be 
generated by choosing different subsets out of 
these n2 elements, so there are 2n2 relations.
A reflexive relation, however, must contain the n 
elements (a, a) for every aA.
Consequently, we can only choose among n2 – n = 
n(n – 1) elements to generate reflexive relations, so 
there are 2n(n – 1) of them.
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Combining Relations

Relations are sets, and therefore, we can apply the 
usual set operations to them.

If we have two relations R1 and R2, and both of 
them are from a set A to a set B, then we can 
combine them to R1  R2, R1  R2, or R1 – R2.

In each case, the result will be another relation 
from A to B.
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Combining Relations

… and there is another important way to combine 
relations.

Definition: Let R be a relation from a set A to a 
set B and S a relation from B to a set C. The 
composite of R and S is the relation consisting of 
ordered pairs (a, c), where aA, cC, and for which 
there exists an element bB such that (a, b)R and 
(b, c)S. We denote the composite of R and S by
SR.

In other words, if relation R contains a pair (a, b) 
and relation S contains a pair (b, c), then SR 
contains a pair (a, c).
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Example: Let D and S be relations on A = {1, 2, 3, 4}.

D = {(a, b) | b = 5 - a}     “b equals (5 – a)”

S = {(a, b) | a < b}        “a is smaller than b”

D = {(1, 4), (2, 3), (3, 2), (4, 1)}

S = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

SD = { (2, 4), (3, 3), (3, 4), (4, 2), (4, 3),

D maps an element a to the element (5 – a), and 
afterwards S maps (5 – a) to all elements larger 
than (5 – a), resulting in SD = {(a,b) | b > 5 – a}
or SD = {(a,b) | a + b > 5}.

(4, 4)}
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We already know that functions are just special 
cases of relations (namely those that map each 
element in the domain onto exactly one element in 
the codomain).

If we formally convert two functions into relations, 
that is, write them down as sets of ordered pairs, 
the composite of these relations will be exactly the 
same as the composite of the functions (as defined 
earlier).



68

Combining Relations

Definition: Let R be a relation on the set A. The 
powers Rn, n = 1, 2, 3, …, are defined inductively by

R1 = R

Rn+1 = RnR

In other words:

Rn = RR … R  (n times the letter R)
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Theorem: The relation R on a set A is transitive if 
and only if Rn  R for all positive integers n. 
Remember the definition of transitivity:
Definition: A relation R on a set A is called 
transitive if whenever (a, b)R and (b, c)R, then 
(a, c)R for a, b, cA. 
The composite of R with itself contains exactly 
these pairs (a, c). 
Therefore, for a transitive relation R, RR does not 
contain any pairs that are not in R, so RR  R.
Since RR does not introduce any pairs that are not 
already in R, it must also be true that (RR)R  R, 
and so on, so that Rn  R.
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In order to study an interesting application of 
relations, namely databases, we first need to 
generalize the concept of binary relations to n-ary 
relations.

Definition: Let A1, A2, …, An be sets. An n-ary 
relation on these sets is a subset of A1A2…An.

The sets A1, A2, …, An are called the domains of the 
relation, and n is called its degree.


