
Lecture 2: Generative AI - Shaping the
Future of Creativity and Innovation

We use language models every day

How do we learn a language model?

Estimate probabilities using text data

● Collect a textual corpus

● Find a distribution that maximizes the probability of the corpus – maximum
likelihood estimation

A naive solution: count and divide

Assume we have N training sentences

● Let x1 , x2 , …, xn be a sentence, and c(x1 , x2 , …, xn) be the number of times it
appeared in the training data.

● Define a language model:

Unigram probability

“I have a dog whose name is Alpha. I have two cats, they like playing
with Alpha”

corpus size m = 17

• P(Alpha) = 2/17; P(cats) = 1/17

• Unigram probability:

Bigram probability

“I have a dog whose name is Alpha. I have two cats, they like playing with Alpha”

Trigram probability/n-gram probability

• “I have a dog whose name is Alpha. I have two cats, they like playing with Alpha”

Neural language models

A differentiable function (e.g. a neural network)

I am a student of UEM Sigmoid Function (e.g.
hyperbolic tangent function
ReLU (Rectified Linear Unit) Function
Softmax Function
SoftPlus Function

How do we maximize the likelihood?

The dominant strategy from the past decade:

1. The randomly initialized differentiable function (neural network)
takes the context as input

2. Have that function output a probability distribution over the
vocabulary

3. Treat the probability of the correct token as your objective to
maximize.

4. Or negative log (probability) as your objective to minimize

5. Differentiate with respect to the parameters, and perform gradient
descent, or Stochastic Gradient Descent

What optimization!!!!

Why did the transformer make such a big difference for language modeling?

A 3-layer LSTM’s calculations for an input of 10 tokens

Tokenization: The input text is
divided into smaller units called
tokens, which can be words,
subwords, or characters. This
process allows the model to
process the text more
efficiently.

A simple form of attention
Attention mechanisms: The attention
mechanism used in the original
transformer architecture is called scaled
dot-product attention. The input
consists of queries and keys of
dimension dk and values of dimension
dv. We compute the dot products of the
query with all keys, divide each by √dk,
and apply a softmax function to obtain
the weights on the values.

Pros and cons

Pros:
● We have a function that can compute a
weighted average (largely) in parallel of an
arbitrary number of vectors!
● The parameters determining what makes it
into our output representation are learned

Cons:
● We’re also hoping to produce n different
output token representations… and this just
produces one…

RNNs for language generation -Autoregressive generation

RNNs for language generation - Machine Translation

Building up to the attention mechanism

What about an average?
‘But we probably don’t want to weight all input vectors
equally… How about a weighted average? Great idea! How can
we automatically decide the weights for a weighted average of
the input vectors?

What kind of function can take in a variable number of inputs?

First AI generated Image
from PIL import Image

Image dimensions
width, height = 512, 512

image = Image.new('RGB', (width, height))

Generate a gradient
for x in range(width):

for y in range(height):
Set pixel color based on position
red = int(255 * (x / width)) # Gradient for red
green = int(255 * (y / height)) # Gradient for green
blue = 128 # Constant blue value
image.putpixel((x, y), (red, green, blue))

image.save("C:/Users/45919/Desktop/UEM_classs/gradient_image.png")
print("Image saved as 'gradient_image.png'")

Fetching $432,500Edmond de Belamy

For attendance
import openai

Set your OpenAI API key
openai.api_key = “TTTTTTTTTTT"
###

prompt = "An of a cat, standing in a roof on a sunny day, smiling."

response = openai.Image.create(
prompt=prompt,
n=1, # Number of images
size="512x512")

Get the URL of the generated image
image_url = response['data'][0]['url']
print(f"Generated Image URL: {image_url}")

Thanks for listening

