
Lecture 2: Generative AI - Shaping the 
Future of Creativity and Innovation



We use language models every day



How do we learn a language model?

Estimate probabilities using text data 

● Collect a textual corpus 

● Find a distribution that maximizes the probability of the corpus – maximum 
likelihood estimation

A naive solution: count and divide

Assume we have N training sentences 

● Let x1 , x2 , …, xn be a sentence, and c(x1 , x2 , …, xn ) be the number of times it 
appeared in the training data. 

● Define a language model:



Unigram probability

“I have a dog whose name is Alpha. I have two cats, they like playing 
with Alpha”

corpus size m = 17 

• P(Alpha) = 2/17; P(cats) = 1/17

• Unigram probability: 



Bigram probability

“I have a dog whose name is Alpha. I have two cats, they like playing with Alpha”



Trigram probability/n-gram probability

• “I have a dog whose name is Alpha. I have two cats, they like playing with Alpha”



Neural language models

A differentiable function (e.g. a neural network)

I am a student of UEM Sigmoid Function (e.g.
hyperbolic tangent function
ReLU (Rectified Linear Unit) Function
Softmax Function
SoftPlus Function



How do we maximize the likelihood? 

The dominant strategy from the past decade: 

1. The randomly initialized differentiable function (neural network) 
takes the context as input 

2. Have that function output a probability distribution over the 
vocabulary 

3. Treat the probability of the correct token as your objective to 
maximize. 

4. Or negative log (probability) as your objective to minimize 

5. Differentiate with respect to the parameters, and perform gradient 
descent, or Stochastic Gradient Descent



What optimization!!!!



Why did the transformer make such a big difference for language modeling? 

A 3-layer LSTM’s calculations for an input of 10 tokens

Tokenization: The input text is 
divided into smaller units called 
tokens, which can be words, 
subwords, or characters. This 
process allows the model to 
process the text more 
efficiently.



A simple form of attention
Attention mechanisms: The attention
mechanism used in the original
transformer architecture is called scaled
dot-product attention. The input
consists of queries and keys of
dimension dk and values of dimension
dv. We compute the dot products of the
query with all keys, divide each by √dk,
and apply a softmax function to obtain
the weights on the values.



Pros and cons

Pros: 
● We have a function that can compute a 
weighted average (largely) in parallel of an 
arbitrary number of vectors! 
● The parameters determining what makes it 
into our output representation are learned 

Cons: 
● We’re also hoping to produce n different 
output token representations… and this just 
produces one…



RNNs for language generation -Autoregressive generation



RNNs for language generation - Machine Translation



Building up to the attention mechanism

What about an average? 
‘But we probably don’t want to weight all input vectors 
equally… How about a weighted average? Great idea! How can 
we automatically decide the weights for a weighted average of 
the input vectors?

What kind of function can take in a variable number of inputs?



First AI generated Image
from PIL import Image

# Image dimensions
width, height = 512, 512

image = Image.new('RGB', (width, height))

# Generate a gradient
for x in range(width):

for y in range(height):
# Set pixel color based on position
red = int(255 * (x / width))      # Gradient for red
green = int(255 * (y / height))  # Gradient for green
blue = 128                       # Constant blue value
image.putpixel((x, y), (red, green, blue))

image.save("C:/Users/45919/Desktop/UEM_classs/gradient_image.png")    
print("Image saved as 'gradient_image.png'")

Fetching $432,500Edmond de Belamy



For attendance
import openai

# Set your OpenAI API key
openai.api_key = “TTTTTTTTTTT"
#################################################

prompt = "An of a cat, standing in a roof on a sunny day, smiling."

response = openai.Image.create(
prompt=prompt,
n=1,  # Number of images
size="512x512"  )

# Get the URL of the generated image
image_url = response['data'][0]['url']
print(f"Generated Image URL: {image_url}")



Thanks for listening


